N-Channel Enhancement-Mode Vertical DMOS FET

Features

- Low threshold (2.0V max.)
- High input impedance and high gain
- Free from secondary breakdown
- Low $\mathrm{C}_{\text {ISS }}$ and fast switching speeds

Applications

- Logic level interfaces - ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

Ordering Information

Part Number	Package Option	Packing
TN2535K1-G	TO-236AB (SOT-23)	3000/Reel
TN0606N3-G	TO-92	1000/Bag
TN0606N3-G P002		
TN0606N3-G P003		
TN0606N3-G P005	TO-92	$2000 / R e e l$
TN0606N3-G P013		
TN0606N3-G P014		TO-243AA (SOT-89)
TN2535N8-G		

-G denotes a lead (Pb)-free / RoHS compliant package.
Contact factory for Wafer / Die availablity.
Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

General Description

This low threshold, enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's wellproven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Product Summary

$\mathrm{BV}_{\text {Dss }} / \mathrm{BV}_{\text {Dcs }}$	$\mathbf{R}_{\substack{\mathrm{DS}(0 \mathrm{~N}) \\(\max)}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\mathrm{ow})}(\mathrm{min}) \end{aligned}$	$\underset{\substack{\operatorname{css}(t) \\(\max)}}{ }$
250 V	7.0Ω	1.2A	2.0 V

Pin Configuration

TO-243AA (SOT-89)
Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{j a}$
TO-236AB (SOT-23)	$203^{\circ} \mathrm{C} / \mathrm{W}$
TO-92	$132^{\circ} \mathrm{C} / \mathrm{W}$
TO-243AA (SOT-89)	$173^{\circ} \mathrm{C} / \mathrm{W}$

Product Marking

SiTN
5325
YYWW

$Y Y=$ Year Sealed
WW = Week Sealed = "Green" Packaging
TO-92

TN3CW
W = Code for week sealed = "Green" Packaging

TO-236AB (SOT-23)

TO-243AA (SOT-89)

Thermal Characteristics

Package	\mathbf{I}_{D} (continuous) †	\mathbf{I}_{D} (pulsed)	Power Dissipation $^{@ T_{A}=250 \mathrm{C}}$	$\mathrm{I}_{\mathrm{DR}}{ }^{\dagger}$	$\mathrm{I}_{\mathrm{DRM}}$
TO-236AB (SOT-23)	150 mA	0.4 A	0.36 W	150 mA	0.4 A
TO-92	215 mA	0.8 A	0.74 W	215 mA	0.8 A
TO-243AA (SOT-89)	316 mA	1.5 A	$1.6 \mathrm{~W}^{\ddagger}$	316 mA	1.5 A

Notes:

$\dagger I_{D}$ (continuous) is limited by max rated T_{j}
\ddagger Mounted on FR5 Board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$.
Electrical Characteristics ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{BV}_{\text {Dss }}$	Drain-to-source breakdown voltage	250	-	-	V	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate threshold voltage	0.6	-	2.0	V	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\Delta V_{\text {GS(th) }}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	-	-4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {GSs }}$	Gate body leakage	-	-	100	nA	$V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSS }}$	Zero gate voltage drain current	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=100 \mathrm{~V}$
		-	-	10		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
		-	-	1.0	mA	$\begin{aligned} & V_{D S}=0.8 \mathrm{Max} \text { Rating, } \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{DO}(\mathrm{O})}$	On-state drain current	0.6	-	-	A	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
		1.2	-	-		$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=25 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static drain-to-source on-state resistance	-	-	8.0	Ω	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
		-	-	7.0		$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.0	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {GS }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transductance	150	-	-	mmho	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	-	110	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{\text {DS }}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	-	60		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	-	23		
$\mathrm{t}_{\text {d(ON) }}$	Turn-on delay time	-	-	20	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	-	25		
t_{f}	Fall time	-	-	25		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

3-Lead TO-236AB (SOT-23) Package Outline (K1)
 2.90x1.30mm body, 1.12 mm height (max), 1.90mm pitch

Symbol		A	A1	A2	b	D	E	E1	e	e1	L	L1	$\boldsymbol{\theta}$
Dimension (mm)	MIN	0.89	0.01	0.88	0.30	2.80	2.10	1.20	$\begin{aligned} & 0.95 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 1.90 \\ & \text { BSC } \end{aligned}$	0.20^{+}	$\begin{aligned} & 0.54 \\ & \text { REF } \end{aligned}$	0°
	NOM	-	-	0.95	-	2.90	-	1.30			0.50		-
	MAX	1.12	0.10	1.02	0.50	3.04	2.64	1.40			0.60		8°

JEDEC Registration TO-236, Variation AB, Issue H, Jan. 1999.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO236ABK1, Version C041309.

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	. 170	. $014{ }^{+}$. $014{ }^{+}$. 175	. 125	. 080	. 095	. 045	. 500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	. 210	. 022^{\dagger}	. 022^{\dagger}	. 205	. 165	. 105	. 105	. 055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO92N3, Version E041009.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
Dimensions (mm)	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00^{+}	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	$0.73{ }^{+}$
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
t This dimension differs from the JEDEC drawing
Drawings not to scale.
Supertex Doc. \#: DSPD-3TO243AAN8, Version F111010.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http:///www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

