Rail-to-Rail Input and Output, Ultralow 1.9nV/ $\sqrt{\mathrm{Hz}}$ Noise, Low Power Op Amps

feATURES

- Low Noise Voltage: $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (100kHz)

■ Low Supply Current: 3mA/Amp Max

- Gain Bandwidth Product: 100MHz
- Dual LT6203 in Tiny DFN Package
- Low Distortion: -80dB at 1MHz
- Low Offset Voltage: $500 \mu \mathrm{~V}$ Max

■ Wide Supply Range: 2.5V to 12.6V

- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Common Mode Rejection Ratio 90dB Typ
- Unity Gain Stable
- Low Noise Current: $1.1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Output Current: 30mA Min
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Low Noise, Low Power Signal Processing
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Driving A/D Converters
- DSL Receivers
- Battery Powered/Battery Backed Equipment

DESCRIPTIOn

The LT ${ }^{\circledR}$ 6202/LT6203/LT6204 are single/dual/quad low noise, rail-to-rail input and output unity gain stable op amps that feature $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage and draw only 2.5 mA of supply current per amplifier. These amplifiers combine very low noise and supply current with a 100 MHz gain bandwidth product, a $25 \mathrm{~V} / \mu \mathrm{S}$ slew rate, and are optimized for low supply signal conditioning systems.

These amplifiers maintain their performance for supplies from 2.5 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. Harmonic distortion is less than -80 dBc at 1 MHz making these amplifiers suitable in low power data acquisition systems.

The LT6202 is available in the 5 -pin SOT-23 and the 8-pin SO, while the LT6203 comes in 8-pin SO and MSOP packages with standard op amp pinouts. For compact layouts the LT6203 is also available in a tiny fine line leadless package (DFN), while the quad LT6204 is available in the 16 -pin SSOP and 14-pin SO packages. These devices can be used as plug-in replacements for many op amps to improve input/output range and noise performance.

[^0]
TYPICAL APPLICATION

Low Noise 4- to 2-Wire Local Echo Cancellation Differential Receiver

LT6202/LT6203/LT6204

ABSOLUTG MAXIMUUM RATINGS (Nole 1)

Total Supply Voltage (V^{+}to V^{-}) \qquad 12.6 V Input Current (Note 2) $\pm 40 \mathrm{~mA}$

Junction Temperature (DD Package) $125^{\circ} \mathrm{C}$

Output Short-Circuit Duration (Note 3) \qquad Indefinite Operating Temperature Range (Note 4) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range
(DD Package) \qquad $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature $150^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

5-LEAD PLASTIC TSOT-23 $\mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=250^{\circ} \mathrm{C} / \mathrm{W}$					
ORDER PA NUMBER		S5 PART MARKING*	ORDER PART NUMBER		S8 PART MARKING
$\begin{aligned} & \text { LT6202CS } \\ & \text { LT6202IS } \end{aligned}$		LTG6	$\begin{aligned} & \hline \text { LT6202CS8 } \\ & \text { LT6202IS8 } \end{aligned}$		$\begin{aligned} & 202 \\ & 2021 \end{aligned}$
DD PACKAGE 8-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{J A}=160^{\circ} \mathrm{C} / \mathrm{W}$ UNDERSIDE METAL CONNECTED TO V^{-}			$88 \mathrm{v}^{+}$ 77 OUT B $6-\ln B$ $5+\operatorname{IN} B$ MSOP $250^{\circ} \mathrm{C} / \mathrm{N}$		
ORDER PART NUMBER	DD PART MARKING*	ORDER PART NUMBER	MS8 PART MARKING	ORDER PART NUMBER	S8 PART MARKING
$\begin{aligned} & \text { LT6203CDD } \\ & \text { LT6203IDD } \end{aligned}$	LAAP	LT6203CMS8 LT6203IMS8	$\begin{aligned} & \text { LTB2 } \\ & \text { LTB3 } \end{aligned}$	$\begin{aligned} & \text { LT6203CS8 } \\ & \text { LT6203IS8 } \end{aligned}$	$\begin{gathered} 6203 \\ 62031 \end{gathered}$

*The temperature grades are identified by a label on the shipping container.

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 SOT-23		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{S}=3 \mathrm{~V}, \text { OV, } \mathrm{V}_{\mathrm{CM}}=\text { Half Supply } \\ & \text { LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 SOT-23 } \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 SOT-23 } \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 S0T-23 } \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$		$\begin{gathered} \hline 0.15 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{mV}} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \hline-7.0 \\ & -8.8 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-1.3 \\ 1.3 \\ -3.3 \\ \hline \end{array}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{II}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}		4.7	11.3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 6)			0.1	0.6	$\mu \mathrm{A}$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.12 \\ & 0.07 \\ & 0.12 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1.1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10 Hz		800		n P-P
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=100 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \\ & \mathrm{f}=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 2 \\ 2.9 \end{gathered}$	4.5	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Input Noise Current Density, Balanced Input Noise Current Density, Unbalanced	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		$\begin{gathered} 0.75 \\ 1.1 \end{gathered}$		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Input Resistance	Common Mode Differential Mode		$\begin{gathered} \hline 4 \\ 12 \end{gathered}$		$\begin{gathered} \overline{\mathrm{M} \Omega} \\ \mathrm{k} \Omega \end{gathered}$
						620234fa

ELECTRICRL CHPRACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ half supply,

unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{CIN}^{\text {N }}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 1.8 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{pF}} \\ & \mathrm{pF} \end{aligned}$
AvoL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, V_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{aligned} & 40 \\ & 8.0 \\ & 17 \end{aligned}$	$\begin{aligned} & 70 \\ & 14 \\ & 40 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 56 \end{aligned}$	$\begin{gathered} \hline 83 \\ 100 \\ 80 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	85	120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	60	74		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	70	100		dB
	Minimum Supply Voltage (Note 7)		2.5			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW Saturation (Note 8)	No Load $\begin{aligned} & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SINK }}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 5 \\ 85 \\ 240 \\ 185 \end{gathered}$	$\begin{gathered} 50 \\ 190 \\ 460 \\ 350 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{OH}	Output Voltage Swing HIGH Saturation (Note 8)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 25 \\ 90 \\ 325 \\ 225 \end{gathered}$	$\begin{gathered} \hline 75 \\ 210 \\ 600 \\ 410 \end{gathered}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \pm 45 \\ & \pm 40 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.3 \end{aligned}$	$\begin{gathered} 3.0 \\ 2.85 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}, \mathrm{V}_{S}=5 \mathrm{~V}$		90		MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	17	24		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1.8	2.5		MHz
ts_{s}	Settling Time	$0.1 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		85		ns

The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$;
$V_{C M}=V_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$V_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 SOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 SOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.2 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 9)	$\mathrm{V}_{\text {CM }}$ = Half Supply	\bullet		3.0	9.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{gathered} 0.15 \\ 0.5 \end{gathered}$	$\begin{aligned} & \hline 0.9 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
620234fa							

ELECTRICPL CHARACTERISTICS The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{array}{\|l} \hline \bullet \\ \bullet \\ \bullet \end{array}$	$\begin{aligned} & -7.0 \\ & -8.8 \end{aligned}$	$\begin{array}{r} -1.3 \\ 1.3 \\ -3.3 \\ \hline \end{array}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		4.7	11.3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 6)		\bullet		0.1	0.6	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 0.15 \\ & 0.10 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1.1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 35 \\ & 6.0 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 36 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet	$\begin{aligned} & 60 \\ & 78 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 97 \\ & 75 \\ & \hline \end{aligned}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	83	100		dB
PSRR	Power Supply Rejection Ratio	$V_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	70	100		dB
	Minimum Supply Voltage (Note 7)		\bullet	3.0			V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW Saturation (Note 8)	No Load $I_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	\bullet		$\begin{gathered} \hline 5.0 \\ 95 \\ 260 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ 200 \\ 365 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 8)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 50 \\ 115 \\ 360 \\ 260 \\ \hline \end{gathered}$	$\begin{aligned} & 1100 \\ & 230 \\ & 635 \\ & 430 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 20 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 33 \\ & \pm 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Is	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 3.1 \\ 2.75 \\ \hline \end{gathered}$	$\begin{aligned} & 3.85 \\ & 3.50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		87		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	15	21		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.6	2.2		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mV mV
		$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	mV mV
		$V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-}$ LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	mV mV
		$V_{S}=3 V, O V, V_{C M}=V^{+} \text {to } V^{-}$ LT6203, LT6204, LT6202S8 LT6202 SOT-23	\bullet		$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	mV mV
							620234fa

5

ELECTRICRL CHARACTERISTICS The o denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 9)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		3.0	9.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet	$\begin{aligned} & -7.0 \\ & -8.8 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.3 \\ 1.3 \\ -3.3 \end{array}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		4.7	11.3	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 6)		\bullet		0.1	0.6	$\mu \mathrm{A}$
l OS	Input Offset Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\begin{array}{\|l} \bullet \\ \bullet \\ \bullet \end{array}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1.1 \\ 1.2 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{S} / 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \bullet \\ \bullet \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & 4.0 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 10 \\ & 32 \\ & \hline \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \hline V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$	$\begin{aligned} & \hline 60 \\ & 75 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 95 \\ & 75 \\ & \hline \end{aligned}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	80	100		dB
PSRR	Power Supply Rejection Ratio	$V_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	70	100		dB
	Minimum Supply Voltage (Note 7)		\bullet	3.0			V
V_{0}	Output Voltage Swing LOW Saturation (Note 8)	No Load $\begin{aligned} & \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 6 \\ 95 \\ 210 \\ \hline \end{gathered}$	$\begin{gathered} \hline 70 \\ 210 \\ 400 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 8)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$	$\bullet \bullet$		$\begin{gathered} 55 \\ 125 \\ 370 \\ 270 \end{gathered}$	$\begin{aligned} & 110 \\ & 240 \\ & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 23 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
IS	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 3.3 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.1 \\ & 3.65 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		83		MHz
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	12	17		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.3	1.8		MHz

ELECARICAL CHPRACTERISTICS The o denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6203, LT6204, LT6202S8 } \\ & V_{C M}=0 V \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\bullet \cdot$		$\begin{aligned} & 1.6 \\ & 3.2 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 6.8 \\ & 5.8 \end{aligned}$	mV mV mV
		$\begin{aligned} & \text { LT6202 SOT-23 } \\ & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1.6 \\ & 3.2 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 3.0 \\ 7.3 \\ 6.3 \\ \hline \end{array}$	mV mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 9)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		7.5	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet	$\begin{aligned} & \hline-7.0 \\ & -10 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-1.4 \\ 1.8 \\ -4.3 \end{array}$	3.6	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5.4	13	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 6)		\bullet		0.15	0.7	$\mu \mathrm{A}$
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	\bullet		$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{gathered} 1 \\ 1.2 \\ 1.4 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	\bullet	$\begin{aligned} & 70 \\ & 10 \end{aligned}$	$\begin{gathered} 120 \\ 18 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=-2 V \text { to } 2 V \end{aligned}$	\bullet	$\begin{aligned} & \hline 65 \\ & 83 \end{aligned}$	$\begin{aligned} & 84 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2V	\bullet	83	110		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	70	100		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW Saturation (Note 8)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$	\bullet		$\begin{gathered} 6 \\ 95 \\ 210 \end{gathered}$	$\begin{gathered} \hline 70 \\ 200 \\ 400 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 8)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 65 \\ 125 \\ 350 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \\ & 625 \\ & \hline \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 25	± 34		mA
IS	Supply Current per Amp		\bullet		3.5	4.3	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		95		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	16	22		V/ $\mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.7	2.3		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6203, LT6204, LT6202S8 } \\ & V_{\text {CM }}=0 V \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 1.7 \\ & 3.8 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 7.5 \\ & 6.6 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & \text { LT6202 SOT-23 } \\ & V_{\text {CM }}=0 \mathrm{~V} \\ & V_{\text {CM }}=V^{+} \\ & V_{\text {CM }}=V^{-} \end{aligned}$	\bullet		1.7 3.8 3.5	$\begin{aligned} & 3.2 \\ & 7.7 \\ & 6.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 9)	$\mathrm{V}_{\text {CM }}$ = Half Supply	-		7.5	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & -7.0 \\ & -10 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.4 \\ 1.8 \\ -4.5 \\ \hline \end{array}$	3.6	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5.4	13	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 6)		\bullet		0.15	0.7	$\mu \mathrm{A}$
l OS	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} \hline 0.15 \\ 0.3 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 1.2 \\ 1.6 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 1.5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	\bullet	$\begin{aligned} & 60 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 110 \\ & 13 \end{aligned}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{C M}=-2 V \text { to } 2 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 84 \\ & 95 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2V	\bullet	80	110		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	70	100		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW Saturation (Note 8)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=15 \mathrm{~mA}$	\bullet		$\begin{gathered} 7 \\ 98 \\ 260 \end{gathered}$	$\begin{gathered} 75 \\ 205 \\ 500 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 8)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=15 \mathrm{~mA} \\ \hline \end{array}$	\bullet		$\begin{gathered} \hline 70 \\ 130 \\ 360 \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & 250 \\ & 640 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ mV
ISC	Short-Circuit Current		\bullet	± 15	± 25		mA
Is	Supply Current per Amp		\bullet		3.8	4.5	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		90		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	-	13	18		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 10)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.4	1.9		MHz

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Inputs are protected by back-to-back diodes and diodes to each supply. If the inputs are taken beyond the supplies or the differential input voltage exceeds 0.7 V , the input current must be limited to less than 40 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT6202C/LT6202I, LT6203C/LT6203I and LT6204C/LT6204I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT6202C/LT6203C/LT6204C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6202C/LT6203C/LT6204C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but are not tested or QA sampled at these temperatures. The LT6202I/LT6203I/LT6204I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 6: Matching parameters are the difference between the two amplifiers A and D and between B and C of the LT6204; between the two amplifiers of the LT6203. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on the identical amplifiers. The difference is calculated between the matching sides in $\mu \mathrm{V} / \mathrm{N}$. The result is converted to dB.
Note 7: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 8: Output voltage swings are measured between the output and power supply rails.
Note 9: This parameter is not 100% tested.
Note 10: Full-power bandwidth is calculated from the slew rate:
FPBW $=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{P}}$
Note 11: Differential gain and phase are measured using a Tektronix TSG120YC/NTSC signal generator and a Tektronix 1780R Video Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Ten identical amplifier stages were cascaded giving an effective resolution of 0.01% and 0.01°.

TYPICAL PERFORMANCE CHARACTERISTICS

LT6202/03/04 G01

Supply Current vs Supply Voltage

 (Both Amplifiers)

LT6202/03/04 G04

Input Bias Current vs Temperature

LT6202/03/04 G07

LT6202/03/04 G02
Offset Voltage vs Input Common Mode Voltage

LT6202/03/04 G05

Output Saturation Voltage vs

 Load Current (Output Low)
$\mathrm{V}_{\text {OS }}$ Distribution, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$

LT6202/03/04 G03
Input Bias Current vs Common Mode Voltage

LT6202/03/04 G06
Output Saturation Voltage vs Load Current (Output High)

LT6202/03/04 G09

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Gain Bandwidth and Phase Margin vs Temperature

LT6202/03/04 G21

Open-Loop Gain vs Frequency

0.1 Hz to 10 Hz Output Voltage Noise

Open-Loop Gain vs Frequency

Gain Bandwidth and Phase Margin vs Supply Voltage

LT6202/03/04 G24

Slew Rate vs Temperature

Output Impedance vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Common Mode Rejection Ratio
vs Frequency

Series Output Resistor vs
Capacitive Load

LT6202/03/04 629

Settling Time vs Output Step (Inverting)

LT6202/03/04 G32

Channel Separation vs Frequency

Series Output Resistor vs

Capacitive Load

LT6202/03/04 G30

Maximum Undistorted Output

 Signal vs Frequency

Power Supply Rejection Ratio vs Frequency

LT6202/03/04 G28
Settling Time vs Output Step
(Noninverting)

LT6202/03/04 G31

Distortion vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

LT6202/03/04 G35

Distortion vs Frequency

LT6202/03/04 G36

Distortion vs Frequency

LT6202/03/04 G37

200ns/DIV

$\pm 5 \mathrm{~V}$ Large-Signal Response

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
$V_{S}= \pm 5 V$
$A_{V}=1$
$R_{L}=1 k$

200ns/DIV

$$
\begin{aligned}
& V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\
& A_{V}=1
\end{aligned}
$$

LT6202/03/04 G39
$R_{L}=1 k$

Output-Overdrive Recovery

[^1]
APPLICATIONS INFORMATION

Amplifier Characteristics

Figure 1 shows a simplified schematic of the LT6202/ LT6203/LT6204, which has two input differential amplifiers in parallel that are biased on simultaneously when the common mode voltage is at least 1.5 V from either rail. This topology allows the input stage to swing from the positive supply voltage to the negative supply voltage. As the common mode voltage swings beyond $\mathrm{V}_{C C}-1.5 \mathrm{~V}$, current source I_{1} saturates and current in Q1/Q4 is zero. Feedback is maintained through the Q2/Q3 differential amplifier, but with an input g_{m} reduction of $1 / 2$. A similar effect occurs with I_{2} when the common mode voltage swings within 1.5 V of the negative rail. The effect of the g_{m} reduction is a shift in the $\mathrm{V}_{0 \mathrm{~s}}$ as I_{1} or I_{2} saturate.

Input bias current normally flows out of the + and -inputs. The magnitude of this current increases when the input common mode voltage is within 1.5 V of the negative rail, and only Q1/Q4 are active. The polarity of this current reverses when the input common mode voltage is within 1.5 V of the positive rail and only Q2/Q3 are active.

The second stage is a folded cascode and current mirror that converts the input stage differential signals to a single ended output. Capacitor C1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The differential drive generator supplies current to the output transistors that swing from rail-to-rail.

Figure 1. Simplified Schematic

15

APPLICATIONS InfORMATION

Input Protection

There are back-to-back diodes, D1 and D2, across the + and - inputs of these amplifiers to limit the differential input voltage to $\pm 0.7 \mathrm{~V}$. The inputs of the LT6202/LT6203/ LT6304 do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from over voltage that causes excessive currents to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of noise, and the total amplifier noise voltage would rise from $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ to $2.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Once the input differential voltage exceeds $\pm 0.7 \mathrm{~V}$, steady state current conducted though the protection diodes should be limited to $\pm 40 \mathrm{~mA}$. This implies 25Ω of protection resistance per volt of continuous overdrive beyond $\pm 0.7 \mathrm{~V}$. The input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive or momentary clipping without these resistors.
Figure 2 shows the input and output waveforms of the amplifier driven into clipping while connected in a gain of $A_{V}=1$. When the input signal goes sufficiently beyond the power supply rails, the input transistors will saturate. When saturation occurs, the amplifier loses a stage of phase inversion and the output tries to change states. Diodes D1 and D2 forward bias and hold the output within

Figure 2. $V_{S}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$ with Large Overdrive
a diode drop of the input signal. In this photo, the input signal generator is clipping at $\pm 35 \mathrm{~mA}$, and the output transistors supply this generator current through the protection diodes.
With the amplifier connected in a gain of $A_{V} \geq 2$, the output can invert with very heavy input overdrive. To avoid this inversion, limit the input overdrive to 0.5 V beyond the power supply rails.

ESD

The LT6202/LT6203/LT6204 have reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

Noise

The noise voltage of the LT6202/LT6203/LT6204 is equivalent to that of a 225Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e. $R_{S}+R_{G} \| R_{F B} \leq 225 \Omega$. With $R_{S}+R_{G} \| R_{F B}=225 \Omega$ the total noise of the amplifier is: $\mathrm{e}_{\mathrm{n}}=\sqrt{(1.9 \mathrm{nV})^{2}+(1.9 \mathrm{nV})^{2}}=2.7 \mathrm{nV}$. Below this resistance value, the amplifier dominates the noise, but in the resistance region between 225Ω and approximately $10 \mathrm{k} \Omega$, the noise is dominated by the resistor thermal noise. As the total resistance is further increased, beyond 10k, the noise current multiplied by the total resistance eventually dominates the noise.
The product of $e_{n} \bullet \sqrt{I_{\text {SUPPLY }}}$ is an interesting way to gauge Iow noise amplifiers. Many low noise amplifiers with low e_{n} have high $I_{\text {SUPPLY }}$ current. In applications that require low noise with the lowest possible supply current, this product can prove to be enlightening. The LT6202/LT6203/ LT6204 have an e_{n}, $\sqrt{l_{\text {SUPPLY }}}$ product of 3.2 per amplifier, yet it is common to see amplifiers with similar noise specifications have an $\mathrm{e}_{\mathrm{n}} \cdot \sqrt{I_{\text {SUPPLY }}}$ product of 4.7 to 13.5 .

For a complete discussion of amplifier noise, see the LT1028 data sheet.

TYPICAL APPLICATIONS

Low Noise, Low Power 1M Ω AC
Photodiode Transimpedance Amplifier

Figure 3 shows the LT6202 applied as a transimpedance amplifier (TIA). The LT6202 forces the BF862 ultralownoise JFET source to 0 V , with R3 ensuring that the JFET has an IDRAIN of 1 mA . The JFET acts as a source follower, buffering the input of the LT6202 and making it suitable for the high impedance feedback elements R1 and R2. The BF862 has a minimum $I_{\text {DSS }}$ of 10 mA and a pinchoff voltage between -0.3 V and -1.2 V . The JFET gate and the LT6202

Figure 3. Low Noise, Low Power 1M Ω AC Photodiode Transimpedance Amplifier
output therefore sit at a point slightly higher than one pinchoff voltage below ground (typically about -0.6 V). When the photodiode is illuminated, the current must come from the LT6202's output through R1 and R2, as in a normal TIA. Amplifier input noise density and gainbandwidth product were measured at $2.4 \mathrm{nV} / \mathrm{Hz}$ and 100 MHz , respectively. Note that because the JFET has a high g_{m}, approximately $1 / 80 \Omega$, its attenuation looking into R3 is only about 2%. Gain-bandwidth product was measured at 100 MHz and the closed-loop bandwidth using a $3 p F$ photodiode was approximately 1.4MHz.

Precision Low Noise, Low Power, $1 \mathrm{M} \Omega$ Photodiode Transimpedance Amplifier

Figure 4 shows the LT6202 applied as a transimpedance amplifier (TIA), very similar to that shown in Figure 3. In this case, however, the JFET is not allowed to dictate the DC-bias conditions. Rather than being grounded, the LT6202's noninverting input is driven by the LTC2050 to the exact state necessary for zero JFET gate voltage. The noise performance is nearly identical to that of the circuit in Figure 3, with the additional benefit of excellent DC performance. Input offset was measured at under $200 \mu \mathrm{~V}$ and output noise was within 2 mV p-p over a 20 MHz bandwidth.

Figure 4. Precision Low Noise, Low Power Transimpedance Amplifier

LT6202/LT6203/LT6204

TYPICAL APPLICATIONS

Single-Supply 16-Bit ADC Driver

Figure 5 shows the LT6203 driving an LTC1864 unipolar 16 -bit A/D converter. The bottom half of the LT6203 is in a gain-of-one configuration and buffers the OV negative full-scale signal $V_{\text {Low }}$ into the negative input of the LTC1864. The top half of the LT6203 is in a gain-of-ten configuration referenced to the buffered voltage $\mathrm{V}_{\text {Low }}$ and drives the positive input of the LTC1864. The input range of the LTC1864 is 0 V to 5 V , but for best results the input range of $\mathrm{V}_{\text {IN }}$ should be from $\mathrm{V}_{\text {Low }}$ (about 0.4 V) to about 0.82 V . Figure 6 shows an FFT obtained with a 10.1318 kHz coherent input waveform, from 8192 samples with no windowing or averaging. Spurious free dynamic range is seen to be about 100dB.

Although the LTC 1864 has a sample rate far below the gain bandwidth of the LT6203, using this amplifier is not necessarily a case of overkill. The designer is reminded that A / D converters have sample apertures that are vanishingly small (ideally, infinitesimally small) and make demands on the upstream circuitry far in excess of what is implied by the innocent-looking sample rate. In addition, when an A / D converter takes a sample, it applies a small capacitor to its inputs with a fair amount of glitch energy and expects the voltage on the capacitor to settle to the true value very quickly. Finally, the LTC1864 has a20MHz analog input bandwidth and can be used in undersampling applications, again requiring a source bandwidth higher than Nyquist.

Figure 5. Single-Supply 16-Bit ADC Driver

Figure 6. FFT Showing 100dB SFDR

PACKAGE DESCRIPTION

DD Package

8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

NOTE:

> 1. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS ARE IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
3. DRAWING NOT TO SCALE

GN16 (SSOP) 0502
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED $0.0066^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDE

PACKAGE DESCRIPTION

MS8 Package
8-Lead Plastic MSOP

(Reference LTC DWG \# 05-08-1660)

PACKAGE DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

PACKAGE DESCRIPTION

S Package
14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

PACKAGE DESCRIPTION

S5 Package

5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

TYPICAL APPLICATION

Low Noise Differential Amplifier with Gain Adjust and Common Mode Control

Low Noise Differential Amplifier Frequency Response

LT6202/03/04 F08

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultralow Noise 50MHz Op Amp	$1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3V Operation, 2.5mA, 4.5nV/ $\sqrt{\mathrm{Hz}}, 60 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 \mathrm{~S}}$
LT1722/LT1723/LT1724	Single/Dual/Quad Low Noise Precision Op Amps	$70 \mathrm{~V} / \mu \mathrm{S}$ Slew Rate, $400 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}$, $3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 3.7 \mathrm{~mA}$
LT1800/LT1801/LT1802	Single/Dual/Quad Low Power 80MHz Rail-to-Rail Op Amps	$8.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, 2mA Max Supply
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers	2.5V Operation, $550 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {OS }}, 3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT6200	Single Ultralow Noise Rail-to-Rail Amplifier	$0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 165 \mathrm{MHz}$ Gain Bandwidth

[^0]: $\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^1]: $V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$
 $A_{V}=2$

