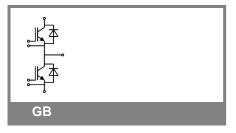


SEMITRANS[®] 3

Trench IGBT Module

SKM 300GB126D

Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications*

- Electronic welders
- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifie					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	310	A	
		T _{case} = 80 °C	200	А	
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	А	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le$ 20 V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse	Diode				
۱ _F	T _j = 150 °C	T _{case} = 25 °C	250	А	
		T _{case} = 80 °C	170	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	А	
Module					
I _{t(RMS)}			500	А	
T _{vj}			- 40 + 150	°C	
T _{stg}			-40+125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	_					
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,5	4,7	mΩ
		T _j = 125°C		5,5	6,8	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2,15	V
		T _j = 125°C _{chiplev.}		2	2,45	V
C _{ies}				15		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,2		nF
C _{res}				1,1		nF
Q_{G}	V _{GE} = -8V - +20V			1800		nC
R _{Gint}	T _j = 25 °C			3,8		Ω
t _{d(on)}				280		ns
t _r	R _{Gon} = 1,5 Ω	V _{CC} = 600V		37		ns
E _{on}	D (5.5	I _C = 200A		21		mJ
t _{d(off)}	R _{Goff} = 1,5 Ω	T _j = 125 °C		560		ns
t _f		V _{GE} = ± 15V		100		ns
E _{off}				33		mJ
R _{th(j-c)}	per IGBT				0,12	K/W

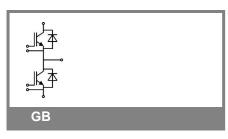
SEMITRANS[®] 3

Trench IGBT Module

SKM 300GB126D

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse d	iode					
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,6	1,8	V
		T _j = 125 °C _{chiplev.}		1,6	1,8	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,8	0,9	V
r _F		T _j = 25 °C		3	3,5	mΩ
		T _j = 125 °C		4	4,5	mΩ
I _{RRM}	I _F = 200 A	T _j = 125 °C		290		А
Q _{rr}	di/dt = 6200 A/µs	-		44		μC
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			18		mJ
R _{th(j-c)D}	per diode				0,25	K/W
Module						
L _{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

Features


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*

- Electronic welders
- AC inverter drives
- UPS

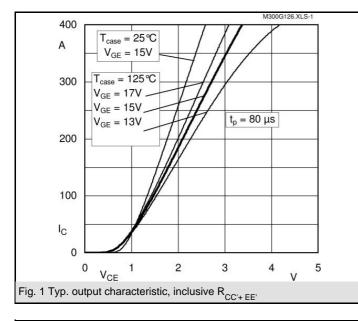
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

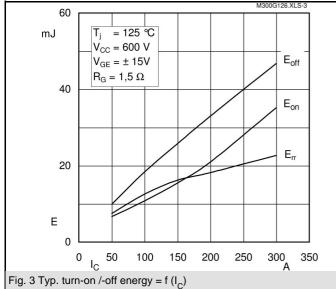
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

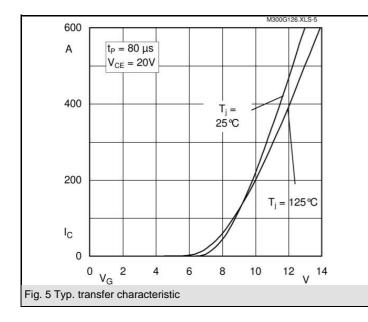
Trench IGBT Module

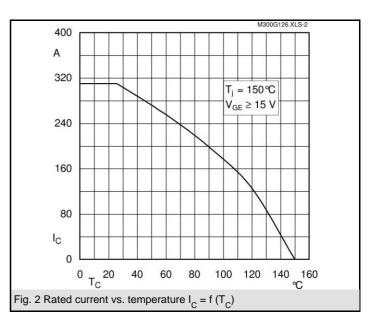
	Z _{th} Symbol	Conditions	Values	Units
	Z _{Ri} th(j-c)l			
Ð	R _i	i = 1	80	mk/W
	R _i	i = 2	30	mk/W
	R _i	i = 3	8,5	mk/W
	R _i	i = 4	1,5	mk/W
	tau	i = 1	0,0576	s
	taui	i = 2	0,01	s
	tau _i	i = 3	0,002	s
	tau _i	i = 4	0,0002	s
	Z _{Ri} th(j-c)D			
	R _i	i = 1	150	mk/W
	R _i	i = 2	75	mk/W
	R _i	i = 3	22	mk/W
	R _i	i = 4	3	mk/W
	tau _i	i = 1	0,0331	s
	tau _i	i = 2	0,0113	s
	tau _i	i = 3	0,0012	s
	tau _i	i = 4	0,001	s

Features


SKM 300GB126D


- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c


Typical Applications*


- Electronic welders
- AC inverter drives
- UPS

