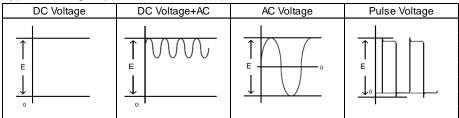
muRata

Reference Specification

Type SA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose

Product specifications in this catalog are as of Apr. 2022, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

- Do not apply a voltage to a safety standard certified product that exceeds the rated voltage as called out in the specifications. Applied voltage between the terminals of a safety standard certified product shall be less than or equal to the rated voltage (+ 10%). When a safety standard certified product is used as a DC voltage product, the AC rated voltage value becomes the DC rated voltage value. (Example:AC250V (r.m.s.) rated product can be used as DC250V (+ 10%) rated product.) If both AC rated voltage and DC rated voltage are specified, apply the voltage lower than the respective rated voltage.
- 1-1) When a safety standard certified product is used in a circuit connected to a commercial power supply, ensure that the applied commercial power supply voltage including fluctuation should be less than 10% above its rated voltage.
- 1-2) When using a safety standard certified product as a DC rated product in circuits other than those connected to a commercial power supply.
- When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

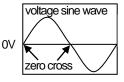
When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.


2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50 W max.

Soldering time : 3.5 s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHÉCK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type SA used for General Electric equipment.

Type SA is Safety Standard Certified capacitors of Class X1,Y2.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14/CSA E60384-14	E37921	
ENEC (VDE)	EN60384-14	EN60384-14 40042990	
CQC	IEC60384-14	CQC15001137840	
the r Rating	enewal of certification.	ed on account of the revision of star	ndards and
2-1. Operating	temperature range	40 ~ +125°C	
-2. Rated Volta	Ŷ	1:AC440V(r.m.s.) 2:AC400V(r.m.s.) 0C1.5kV	
2-3. Part numb	er configuration		
ex.) <u>DE2</u> Series	B3 <u>SA</u> 47 Temperature Certified Capac Characteristics Type		
• Series DE2	2 denotes class X1,Y2.		
• Tempe	rature Characteristics		
		Temperature Characteristics	
	1X B3	SL B	
	E3	E	
F		on on [Specification and test metho	ds].
• Certifie	ed Type denotes safety certified type nan	ne Type SA	

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 \text{pF}$$

• Capacitance Tolerance Please refer to [Part number list].

Lead Style

Code	Lead Style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type
* Dlagon rof	arta [Dart number list]

* Please refer to [Part number list].

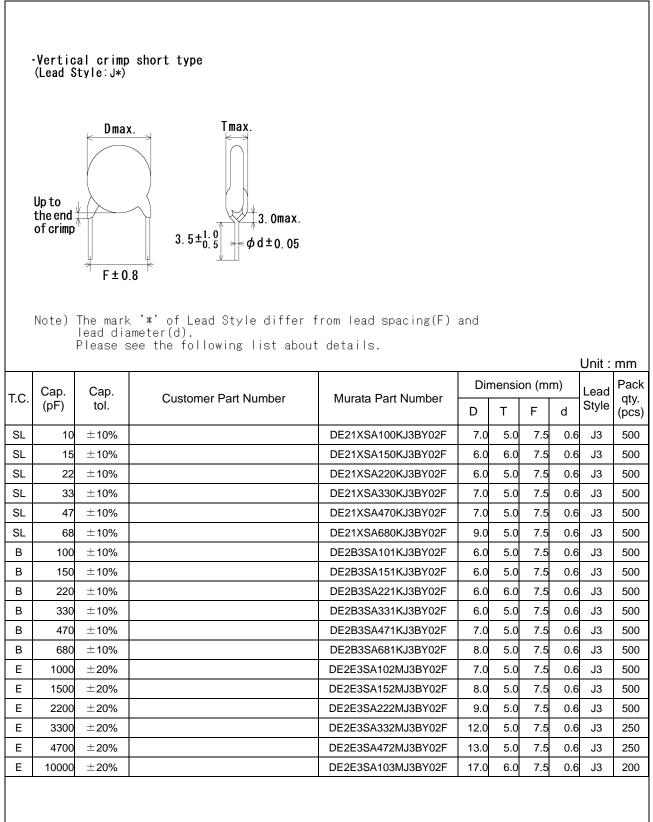
Package

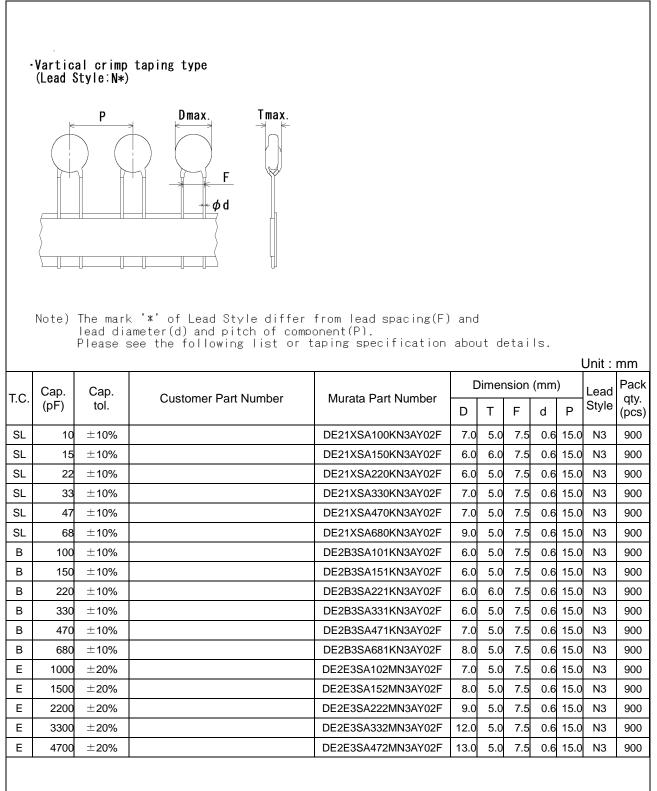
ige	
Code	Package
В	Bulk type
A	Ammo pack taping type

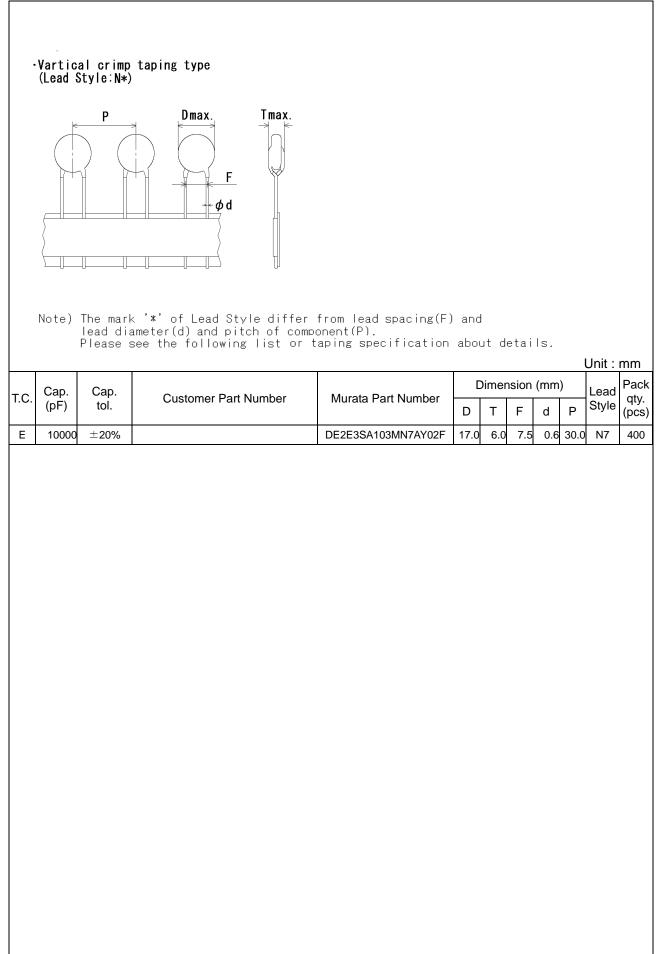
• Individual Specification

For part number that cannot be identified without "Individual Specification", it is added at the end of part number.

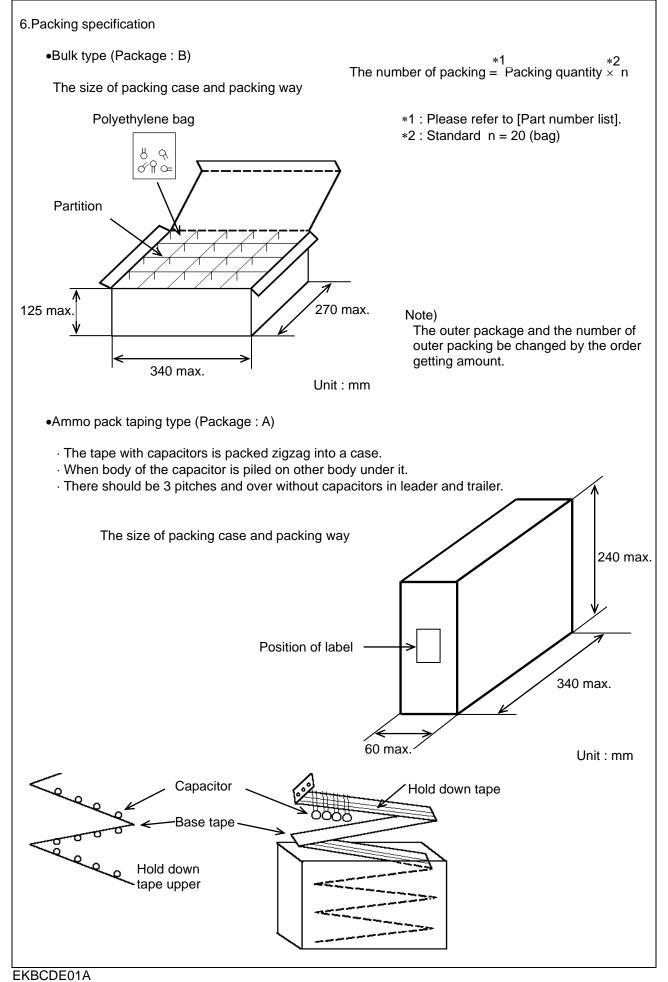
e end of part number.	
Code	Individual Specification
Y02F	 Rated voltage : X1:AC440V(r.m.s.) Y2:AC400V(r.m.s.) DC1.5kV Halogen Free Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire Dielectric strength between lead wires: AC2600V(r.m.s.)

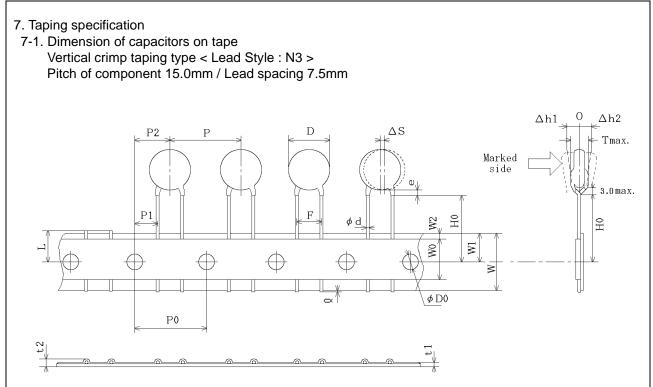

Note) Murata part numbers might be changed depending on Lead Style or any other changes. Therefore, please specify only the Certified Type (SA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.


Certified type	: SA
Capacitance	: Actual value(under 100pF)
	3 digit system(100pF and over)
Capacitance tolerance	: Code
Class code and Rated voltage mark	: X1 440~
	Y2 400~
Manufacturing year	: Letter code (The last digit of A.D. year.)
Manufacturing month	: Çode
	$\left(Feb./Mar. \rightarrow 2 Aug./Sep. \rightarrow 8 \right)$
	Apr./May. \rightarrow 4 Oct./Nov. \rightarrow O
	\bigcup Jun./Jul. $\rightarrow 6$ Dec./Jan. $\rightarrow D$
Company name code	: Cm15 (Made in Thailand)


(Example)

4.	Part nu	mber list								
	Vertica (Lead S	al crimp tyle:A*)	long type							
-		0 The mark lead dia	Tmax. Tmax. 3.0 max. 25.0 min. ϕd ± 0.05 . '*' of Lead Style differ f meter(d). we the following list about		and				Unit :	mm
T.C.	Cap.	Cap.	Customer Part Number	Murata Part Number	Dimension (mm)			m)	Style qty.	Pack qty.
	(pF)	tol.			D	Т	F	d	Style	(pcs)
SL	10	$\pm 10\%$		DE21XSA100KA3BY02F	7.0	5.0	7.5	0.6	A3	250
SL	15	$\pm 10\%$		DE21XSA150KA3BY02F	6.0	6.0	7.5	0.6	A3	500
SL	22	$\pm 10\%$		DE21XSA220KA3BY02F	6.0	5.0	7.5	0.6	A3	500
SL	33									500
	- 55	$\pm 10\%$		DE21XSA330KA3BY02F	7.0	5.0	7.5	0.6		250
SL	47	±10% ±10%		DE21XSA330KA3BY02F DE21XSA470KA3BY02F	7.0 7.0	5.0 5.0	7.5 7.5	0.6 0.6	A3	
SL SL									A3 A3	250
	47	±10%		DE21XSA470KA3BY02F	7.0	5.0	7.5	0.6	A3 A3 A3	250 250
SL	47 68	±10% ±10%		DE21XSA470KA3BY02F DE21XSA680KA3BY02F	7.0 9.0	5.0 5.0	7.5 7.5	0.6 0.6	A3 A3 A3 A3	250 250 250
SL B	47 68 100	±10% ±10% ±10%		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F	7.0 9.0 6.0	5.0 5.0 5.0	7.5 7.5 7.5	0.6 0.6 0.6	A3 A3 A3 A3 A3	250 250 250 500
SL B B	47 68 100 150	±10% ±10% ±10% ±10%		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F	7.0 9.0 6.0 6.0	5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6	A3 A3 A3 A3 A3 A3 A3	250 250 250 500 500
SL B B B	47 68 100 150 220	±10% ±10% ±10% ±10%		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F	7.0 9.0 6.0 6.0 6.0	5.0 5.0 5.0 5.0 6.0 5.0	7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6	A3 A3 A3 A3 A3 A3 A3 A3	250 250 250 500 500 500
SL B B B B	47 68 100 150 220 330	±10% ±10% ±10% ±10% ±10%		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F	7.0 9.0 6.0 6.0 6.0 6.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6	A3	250 250 250 500 500 500
SL B B B B B B	47 68 100 150 220 330 470	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F DE2B3SA471KA3BY02F	7.0 9.0 6.0 6.0 6.0 7.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6 0.6	A3	250 250 500 500 500 500 250
SL B B B B B B B	47 68 100 150 220 330 470 680	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F DE2B3SA471KA3BY02F DE2B3SA681KA3BY02F	7.0 9.0 6.0 6.0 6.0 7.0 8.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6 0.6 0.6	A3	250 250 500 500 500 500 250 250
SL B B B B B B E	47 68 100 150 220 330 470 680 1000	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 20\%$		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F DE2B3SA471KA3BY02F DE2B3SA681KA3BY02F DE2E3SA102MA3BY02F	7.0 9.0 6.0 6.0 6.0 7.0 8.0 7.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A3	250 250 500 500 500 250 250 250
SL B B B B B B E E	47 68 100 150 220 330 470 680 1000 1500	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 20\%$		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F DE2B3SA471KA3BY02F DE2B3SA681KA3BY02F DE2E3SA102MA3BY02F DE2E3SA152MA3BY02F	7.0 9.0 6.0 6.0 6.0 7.0 8.0 7.0 8.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A3	250 250 500 500 500 500 250 250 250 250
SL B B B B E E E	47 68 100 220 330 470 680 1000 1500 2200	$\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 20\%$ $\pm 20\%$		DE21XSA470KA3BY02F DE21XSA680KA3BY02F DE2B3SA101KA3BY02F DE2B3SA151KA3BY02F DE2B3SA221KA3BY02F DE2B3SA331KA3BY02F DE2B3SA471KA3BY02F DE2B3SA681KA3BY02F DE2E3SA102MA3BY02F DE2E3SA152MA3BY02F DE2E3SA222MA3BY02F	7.0 9.0 6.0 6.0 6.0 7.0 8.0 7.0 8.0 9.0	5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	A3 A3	250 250 500 500 500 250 250 250 250 250

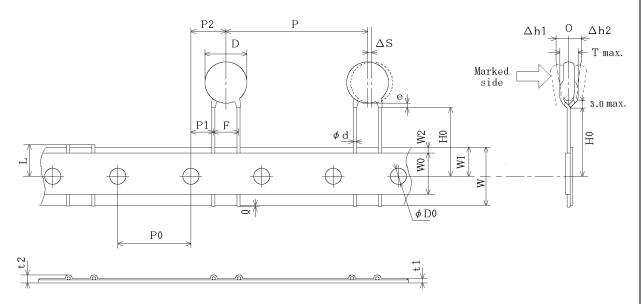



ວ. ວບ								
No.	ecification and test Ite		Sne	cification			Too	t method
1 1	Appearance and o			fect on appearar		The capacitor		inspected by naked eyes
'		61101611910119	form and dime			for visible evid		
				Part number lis		Dimensions should be measured with slide calipers		
2	Marking		To be easily le		-	The capacitor should be inspected by naked e		
3	Dielectric	Between lead	No failure.	gioto.		The capacitor should not be damaged when		
-	strength	wires				AC2600V(r.m.s.) <50/60Hz> is applied between		
	-					the lead wires	for 60 s.	
		Body	No failure.					e capacitor should be
	insulation					connected tog		V
						Then, a metal		
						be closely wra		
						the body of the to the distance		foil
						about 3 to 4mr		
						from each tern		ັດດັ່ງ ເຊິ່ງ ເ ເຊິ່ງ ເຊິ່ງ ເຊິ່
							uld be inserted into a	
								al balls of about 1mm
								00V (r.m.s.)<50/60Hz> is
						applied for 60 s between the capacitor lead wires		
4	Insulation D. 11		4000011-			and metal ball		a abaula be see
4	Insulation Resista	nce (I.K.)	10000MΩ min			The insulation resistance should be measured with $DC500\pm50V$ within 60 ± 5 s of charging.		
			1			The voltage should be applied to the capacitor		
						through a resis		
5	Capacitance		Within specified tolerance.					be measured at 20°C with
-						1±0.1kHz and		
6	Dissipation Factor	r (D.F.)	2.5% max.					nould be measured
	-					at 20°C with 1±0.1kHz and AC1±0.2V(r.m.s.) max		
7	Temperature char	acteristic	Char, SL : +35	0 to -1000 pm/°	c '	The capacitan	ce measu	rement should be made at
	remperature enai			+20 to +85°C)		each step spe		
			Char. B : Wit					
			Char. E : Witl					
			(Temp. range :	-25 to +85°C)				
				Step	1	1 2	3	4 5
				Temp.(°C)	20-	±2 -25±2	20±2	85±2 20±2
8	Active flammabilit	у	The cheese-cl fire.	oth should not b		least one but r cheese-cloth. discharges. Th discharges sho	nore than The capao ne interval ould be 5	e individually wrapped in a two complete layers of citor should be subjected to between successive s. The UAc should be er the last discharge.
						L1 to L4 : 1.5m R : 1000 UAc : UR : Cx : Capa F : Fuse	nH±20% ^ ⊇±2%, Ct	0A
							Ux 5kV	

			Reference only	
No.	Item		Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s.
		Bending		With the termination in its normal position, the capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of about 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance D.F.	Within the specified tolerance. 2.5% max.	supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.
11	Solderability of lead		Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of $25wt\%$ rosin and then into molten solder for 2 ± 0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder : $245\pm5^{\circ}$ C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5 ± 0.5 s
		change I.R.	1000MΩ min.	$(In case of 260\pm5^{\circ}C : 10\pm1 s)$ The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal Capacitor I
				1.5 + to 2.0mm + Molten solder
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)
				Post-treatment : Capacitor should be stored for 1
4.2	Soldoring offect	Appearance	No marked defect	to 2 h at *1room condition. First the capacitor should be stored at 120+0/-5°C
13	Soldering effect (On-preheat)	Appearance Capacitance change	No marked defect. Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.
		strength		Thermal insulating
				□ = = = = = = = + to 2.0mm □ = = = = = = + to 2.0mm □ = = = = = = + to 2.0mm bolten solder
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements.
				(Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to
* ¹ "ro	om condition" Temper	ature: 15 to 35°0	L C, Relative humidity: 45 to 75%, Atmos	2 h at *1room condition.
		a.u.o. 10 10 00 0	2, Addition Hamiliany. 40 10 7070, All 100	
FSS/				

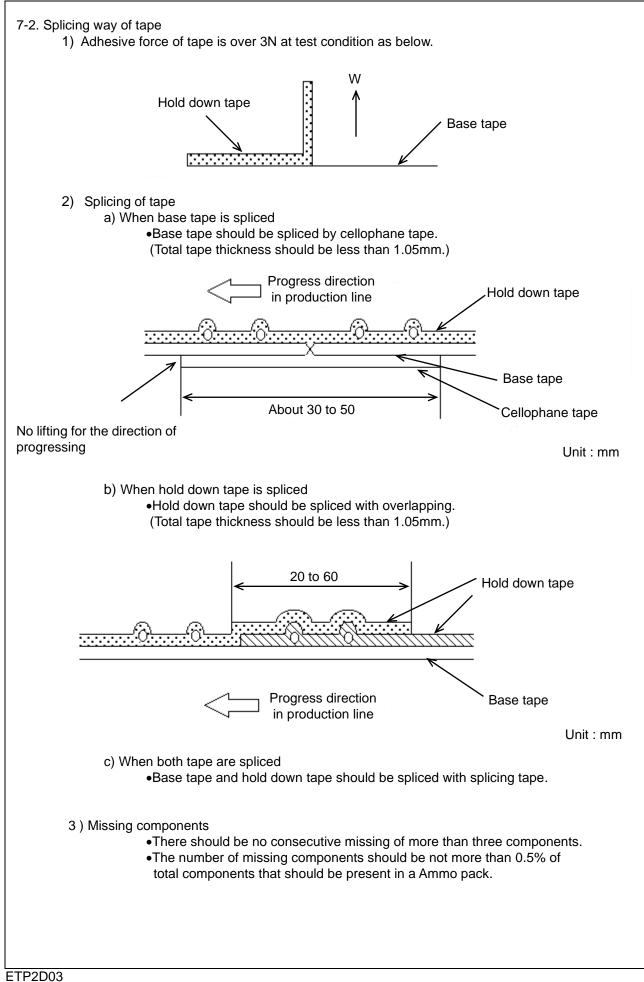
No. Item Specification Test met 14 Flame test The capacitor flame discontinue as follows. The capacitor should be sub flame for 15 s. and then rem cycle. 1 to 4 30 s max. 5 60 s max. 15 Passive flammability The burning time should not be exceeded the time 30 s. The tissue paper should not The capacitor under test should in the position which best pro Time of exposure to flame is	jected to applied oved for 15 s until 5 ^{apactor} ^{Flame} ^{er} puld be held in the flame pomotes burning.
15 Passive flammability 15 Passive flammability 15 Passive flammability 15 Passive flammability 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 11 12 13 14 15 15 16 17 18 19 10 10 11 12	oved for 15 s until 5
Cycle Time 1 to 4 30 s max. 5 60 s max. 15 Passive flammability The burning time should not be exceeded the time 30 s. The capacitor under test should in the position which best provided the time 30 s.	Flame er puld be held in the flame pomotes burning.
1 to 4 30 s max. 5 60 s max. 15 Passive flammability The burning time should not be exceeded the time 30 s. The capacitor under test should not be in the position which best provided the time 30 s.	Flame er puld be held in the flame pomotes burning.
15 Passive flammability The burning time should not be exceeded the time 30 s. The capacitor under test should in the position which best provided the time 30 s.	ould be held in the flame
15 Passive flammability The burning time should not be exceeded the time 30 s. The capacitor under test should not be in the position which best pro-	ould be held in the flame
15 Passive flammability The burning time should not be exceeded the time 30 s. The capacitor under test should not be in the position which best provided the time 30 s.	ould be held in the flame
exceeded the time 30 s. in the position which best pro-	omotes burning.
inste	
ignite. Length of flame : 12	
Gas burner : Leng	le Dia. 0.5 ± 0.1 mm
	side Dia. 0.9mm max.
Gas : Butane gas	Purity 95% min.
	— ← Capacitor
About 8mm	
Gas burner -> Flame	
	±5mm
\uparrow	< Tissue
About 10mm thick board	
16 Humidity (Under steady Appearance No marked defect. Set the capacitor for 500±12 95% relative humidity.	h at 40±2°C in 90 to
(Under steady state)Capacitance changeChar. SL: Within ±5% Within ±10%95% relative humidity.	
Char. B : Within ±10% Char. E : Within ±15% Pre-treatment : Capacitor sl	nould be stored at
D.F. Char. SL : 2.5% max. 125±2°C fo	r 1 h, and apply the
Char. B, E : 5.0% max. AC2000V(r	.m.s.) 60s then placed
1.K. 5000002 min.	ondition for 24±2 h al measurements.
Dielectric Feritien 5 (De net en	al measurements. ply to Char. SL)
Post-treatment :Capacitor sh	hould be stored for 1
17 Humidity loading Appearance No marked defect. Apply AC440V(r.m.s.) for 50	
Capacitance Char. SL : Within ±5% 90 to 95% relative humidity.	
change Char. B : Within ±10% Char. E : Within ±15% Pre-treatment : Capacitor sl	hould be stored at
	r 1 h, and apply the
Char. B, E : 5.0% max. AC2000V(r	.m.s.) 60s then placed
LR 3000MO min at *1room c	ondition for 24±2 h
Dielectric Per item 3 before initi	al measurements.
strength (Do not ap	ply to Char. SL)
	som condition.
¹¹ "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa	
SSA01E	

<u>No.</u> 18	Life Temperature and immersion cycle	Appearance Capacitance change I.R. Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	Specification No marked defect. Within ±20% 3000MΩ min. Per item 3 No marked defect. Char. SL : Within ±5% Char. SL : Within ±10% Char. SL : Within ±10% Char. SL : 2.5% max. Char. SL : 5.0% max. 3000MΩ min.	a 8kV are app The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca cfor a po the air of 125- Throug to a AC of mair voltage Pre-tre	erature erature erature	rs are placed freased to AC measure to AC AC AC Measure to AC AC AC Measure to AC AC AC AC Measure to AC AC AC AC AC AC AC AC AC AC AC AC AC A	Fronttime (T1) Time to half-va t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *1room co subjected to	ad apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500
	Temperature and	Capacitance change I.R. Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	Within ±20% 3000MΩ min. Per item 3 No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. SL : 5.0% max. 3000MΩ min.	Each i a 8kV are app The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca contre to a AC of mair voltage Pre-tre	erature erature erature	ual capaciton ses for three to bife test. Tz rs are placed of 1000 h. e oven is mai C, and relati he test, the c(r.m.s.)<50/6 uency, excep reased to AC t : Capacito 125±2°C AC2000 at *1000 tt : Capacito 24±2 h a r should be s cycles, then vcles.	Fronttime (T1) Time to half-va t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *1room co subjected to	a ting air oven a temperature $(T2) = 50 \mu$ s ating air oven a temperature (750% max). are subjected nating voltage a each hour th h.s.) for 0.1 s. a stored at a dapply the Ds then placed for 24±2 h urements. har. SL) stored for podition. 5500
19		change I.R. Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	3000MΩ min. Per item 3 No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	a 8kV are app The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca cfor a po the air of 125- Throug to a AC of mair voltage Pre-tre	impuls bolied to (%) pacito eriod c in the +2/0 ° ghout t C680V cost freq e is inc atmen pacito eriod c is inc atmen pacito cature sion cy erature	rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excep reased to AC t : Capacito 125±2°C AC2000 at *1roon before i (Do not c) 24±2 h a c should be s cycles, then vcles.	Fronttime (T1) Time to half-va t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *1room co subjected to	a ting air oven a temperature $(T2) = 50 \mu$ s ating air oven a temperature (750% max). are subjected nating voltage a each hour th h.s.) for 0.1 s. a stored at a dapply the Ds then placed for 24±2 h urements. har. SL) stored for podition. 5500
19		I.R. Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	Per item 3 No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	are app The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca temper immers < Temp	placito eriod c placito eriod c in the +2/-0 ° phout t c680V hs freq e is inc atmer eatmer pacito cature sion cy erature	Transformed a set of the set.	Front time (T1) Time to half-va t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m. r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	$= 1.7 \mu \text{s} = 1.67 \text{T}$ alue (T2) $= 50 \mu \text{s}$ ating air oven a temperature 7 of 50% max. are subjected nating voltage = each hour th h.s.) for 0.1 s. = stored at ad apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. = 5500
19		Dielectric strength Appearance Capacitance change D.F. I.R. Dielectric	Per item 3 No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca for a por The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca temper immers	pacito eriod c in the +2/-0 ° hout t 2680V hs freq is inc atmer pacito catmer pacito catmer eatme	rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excep reased to AC at : Capacito $125\pm2^{\circ}C$ AC2000 at *1room before i (Do not nt :Capacito 24 ± 2 h a r should be s cycles, then vcles.	Time to half-va t t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m or should be c for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *1room co subjected to	ating air oven a temperature 7 of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for ondition. p 500
19		Strength Appearance Capacitance change D.F. I.R. Dielectric	No marked defect. Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca temper immers	pacito eriod c in the +2/-0 ° hout t 2680V as freq e is inc atmer	T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.	Time to half-va t t d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m or should be c for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *1room co subjected to	ating air oven a temperature 7 of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for ondition. p 500
19		Appearance Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca for a po The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre Post-tre The ca temper immers <temp< td=""><td>pacito eriod c in the +2/-0 c hout the catmer eatmer pacito cature sion cy erature</td><td>T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.</td><td>t d in a circul intained at a ve humidity capacitors a coHz> alterr pt that once C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to CP r should be at *1room co subjected to</td><td>ating air oven a temperature y of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at ad apply the Ds then placeoc for 24±2 h urements. har. SL) stored for ondition.</td></temp<>	pacito eriod c in the +2/-0 c hout the catmer eatmer pacito cature sion cy erature	T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.	t d in a circul intained at a ve humidity capacitors a coHz> alterr pt that once C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to CP r should be at *1room co subjected to	ating air oven a temperature y of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at ad apply the Ds then placeoc for 24±2 h urements. har. SL) stored for ondition.
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca for a pe The air of 125- Throug to a AC of mair voltage Pre-tre Post-tre The ca temper immers <temp< td=""><td>pacito eriod c in the +2/-0 ° hout t 2680V as freq e is inc atmer pacito atmer pacito cature sion cy eratur</td><td>T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.</td><td>d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to</td><td>a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500</td></temp<>	pacito eriod c in the +2/-0 ° hout t 2680V as freq e is inc atmer pacito atmer pacito cature sion cy eratur	T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.	d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	for a performance of the air voltage of mair voltage of mair voltage of the air of the a	pacito eriod c in the +2/-0 ° hout t 2680V hs freq e is inc atmer pacito ature sion cy eratur	T T2 rs are placed of 1000 h. e oven is mai C, and relati he test, the of (r.m.s.)<50/6 uency, excel reased to AC 125±2°C AC2000 at *1roon before i (Do not nt : Capaciton 24±2 h a r should be s cycles, then vcles.	d in a circul intained at a ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	for a performance of the air voltage of mair voltage of mair voltage of the air of the a	eriod c in the +2/-0 ° hout t 2680V ns freq e is inc atmer pacito ature sion cy eratur	rs are placed of 1000 h. e oven is mai C, and relati he test, the c (r.m.s.)<50/6 uency, excep reased to AC 125±2°C AC2000 at *1roon before i (Do not rt : Capacito 24±2 h a r should be s cycles, then vcles.	intained at a ve humidity capacitors a 0Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial measu apply to CH r should be at *1room co subjected to	a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	for a performance of the air voltage of mair voltage of mair voltage of the air of the a	eriod c in the +2/-0 ° hout t 2680V ns freq e is inc atmer pacito ature sion cy eratur	of 1000 h. e oven is mai C, and relati he test, the c (r.m.s.)<50/6 uency, excep reased to AC at : Capacito 125±2°C AC2000 at *1roon before i (Do not t: Capacitol 24±2 h a cycles, then vcles.	intained at a ve humidity capacitors a 0Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial measu apply to CH r should be at *1room co subjected to	a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	for a performance of the air voltage of mair voltage of mair voltage of the air of the a	eriod c in the +2/-0 ° hout t 2680V ns freq e is inc atmer pacito ature sion cy eratur	of 1000 h. e oven is mai C, and relati he test, the c (r.m.s.)<50/6 uency, excep reased to AC at : Capacito 125±2°C AC2000 at *1roon before i (Do not t: Capacitol 24±2 h a cycles, then vcles.	intained at a ve humidity capacitors a 0Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial measu apply to CH r should be at *1room co subjected to	a temperature v of 50% max. are subjected nating voltage e each hour th n.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	of 125- Throug to a AC of mair voltage Pre-tre Post-tre The ca temper immers <temp< td=""><td>+2/-0 ° phout t 2680V hs freq is inc atmer eatmer pacito rature sion cy eratur</td><td>C, and relati he test, the c (r.m.s.)<50/6 uency, excep reased to AC tt : Capacito 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.</td><td>ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to</td><td>v of 50° max. are subjected hating voltage e each hour th h.s.) for 0.1 s. e stored at hd apply the Ds then placed for 24 ± 2 h urements. har. SL) stored for podition. b 500</td></temp<>	+2/-0 ° phout t 2680V hs freq is inc atmer eatmer pacito rature sion cy eratur	C, and relati he test, the c (r.m.s.)<50/6 uency, excep reased to AC tt : Capacito 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.	ve humidity capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	v of 50° max. are subjected hating voltage e each hour th h.s.) for 0.1 s. e stored at hd apply the Ds then placed for 24 ± 2 h urements. har. SL) stored for podition. b 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	Pre-tre Post-tre The ca temper immers	hout t 2680V as freq e is inc atmer eatme pacito rature sion cy eratur	he test, the c (r.m.s.)<50/6 uency, excep reased to AC tt : Capacito 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.	capacitors a 50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	are subjected nating voltage e each hour th h.s.) for 0.1 s. e stored at nd apply the 0s then placed for 24±2 h urements. har. SL) stored for podition. 0500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	to a AC of mair voltage Pre-tre Post-tr The ca temper immers <temp< td=""><td>C680V hs freq is inc atmer eatme pacito rature sion cy eratur</td><td>(r.m.s.)<50/6 uency, excep reased to AC 125±2°C AC2000 at *1roon t *1roon t :Capacito 24±2 h a r should be s cycles, then rcles.</td><td>50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to</td><td>nating voltage e each hour th h.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500</td></temp<>	C680V hs freq is inc atmer eatme pacito rature sion cy eratur	(r.m.s.)<50/6 uency, excep reased to AC 125±2°C AC2000 at *1roon t *1roon t :Capacito 24±2 h a r should be s cycles, then rcles.	50Hz> alterr pt that once C1000V(r.m r should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cł r should be at *1room co subjected to	nating voltage e each hour th h.s.) for 0.1 s. e stored at nd apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	of mair voltage Pre-tre Post-tr The ca temper immers <temp< td=""><td>eatmer pacito rature sion cy eratur</td><td>tuency, excep reased to AC 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.</td><td>pt that once C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at *¹room cc subjected to</td><td>e each hour th h.s.) for 0.1 s. e stored at d apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500</td></temp<>	eatmer pacito rature sion cy eratur	tuency, excep reased to AC 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.	pt that once C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial meass apply to Cl r should be at * ¹ room cc subjected to	e each hour th h.s.) for 0.1 s. e stored at d apply the Ds then placed for 24±2 h urements. har. SL) stored for podition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	Voltage Pre-tre Post-tr The ca temper immers <temp< td=""><td>e is inc atmer eatme pacito rature sion cy eratur</td><td>reased to AC 125±2°C AC2000 at *1roor i (Do not nt :Capacitor 24±2 h a r should be s cycles, then vcles.</td><td>C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial measi apply to Cl r should be at *¹room cc subjected to</td><td>n.s.) for 0.1 s. e stored at d apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500</td></temp<>	e is inc atmer eatme pacito rature sion cy eratur	reased to AC 125±2°C AC2000 at *1roor i (Do not nt :Capacitor 24±2 h a r should be s cycles, then vcles.	C1000V(r.m or should be C for 1 h, an V(r.m.s.) 60 n condition nitial measi apply to Cl r should be at * ¹ room cc subjected to	n.s.) for 0.1 s. e stored at d apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	Pre-tre Post-tre The ca temper immers <temp< td=""><td>atmer eatme pacito ature sion cy eratur</td><td>t : Capacito 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then vcles.</td><td>r should be C for 1 h, an V(r.m.s.) 60 n condition nitial measu apply to Cl r should be at *¹room co subjected to</td><td>stored at ad apply the Ds then placed for 24 ± 2 h urements. har. SL) stored for pondition. b 500</td></temp<>	atmer eatme pacito ature sion cy eratur	t : Capacito 125±2°C AC2000 at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then vcles.	r should be C for 1 h, an V(r.m.s.) 60 n condition nitial measu apply to Cl r should be at * ¹ room co subjected to	stored at ad apply the Ds then placed for 24 ± 2 h urements. har. SL) stored for pondition. b 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	Post-tre The ca temper immers <temp< td=""><td>eatme pacito ature sion cy eratur</td><td>$125\pm2^{\circ}C$ AC2000 at *1 con before i (Do not rt:Capacitol 24\pm2 h a r should be s cycles, then vcles.</td><td>C for 1 h, an V(r.m.s.) 60 n condition nitial mease apply to Ch r should be at *¹room co subjected to</td><td>ad apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500</td></temp<>	eatme pacito ature sion cy eratur	$125\pm2^{\circ}C$ AC2000 at *1 con before i (Do not rt:Capacitol 24\pm2 h a r should be s cycles, then vcles.	C for 1 h, an V(r.m.s.) 60 n condition nitial mease apply to Ch r should be at * ¹ room co subjected to	ad apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	Post-tre The ca temper immers <temp< td=""><td>eatme pacito ature sion cy eratur</td><td>$125\pm2^{\circ}C$ AC2000 at *1 con before i (Do not rt:Capacitol 24\pm2 h a r should be s cycles, then vcles.</td><td>C for 1 h, an V(r.m.s.) 60 n condition nitial mease apply to Ch r should be at *¹room co subjected to</td><td>ad apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500</td></temp<>	eatme pacito ature sion cy eratur	$125\pm2^{\circ}C$ AC2000 at *1 con before i (Do not rt:Capacitol 24\pm2 h a r should be s cycles, then vcles.	C for 1 h, an V(r.m.s.) 60 n condition nitial mease apply to Ch r should be at * ¹ room co subjected to	ad apply the Ds then placed for 24±2 h urements. har. SL) stored for pondition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca temper immers <temp< td=""><td>pacito ature sion cy eratur</td><td>at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.</td><td>n condition nitial measu apply to Cl r should be at *¹room co subjected to</td><td>for 24±2 h urements. har. SL) stored for ondition. o 500</td></temp<>	pacito ature sion cy eratur	at *1roon before i (Do not nt :Capacito 24±2 h a r should be s cycles, then rcles.	n condition nitial measu apply to Cl r should be at * ¹ room co subjected to	for 24±2 h urements. har. SL) stored for ondition. o 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca temper immers <temp< td=""><td>pacito ature sion cy eratur</td><td>before i (Do not nt :Capacito) 24±2 h a r should be s cycles, then rcles.</td><td>nitial meas apply to Ch r should be at *¹room co subjected to</td><td>urements. har. SL) stored for pndition. p 500</td></temp<>	pacito ature sion cy eratur	before i (Do not nt :Capacito) 24±2 h a r should be s cycles, then rcles.	nitial meas apply to Ch r should be at * ¹ room co subjected to	urements. har. SL) stored for pndition. p 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca temper immers <temp< td=""><td>pacito ature sion cy eratur</td><td>(Do not nt :Capacitor 24±2 h a r should be s cycles, then rcles.</td><td>apply to Ch r should be at *¹room co subjected to</td><td>har. SL) stored for ondition. o 500</td></temp<>	pacito ature sion cy eratur	(Do not nt :Capacitor 24±2 h a r should be s cycles, then rcles.	apply to Ch r should be at * ¹ room co subjected to	har. SL) stored for ondition. o 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca temper immers <temp< td=""><td>pacito ature sion cy eratur</td><td>nt :Capacito 24±2 h a r should be s cycles, then /cles.</td><td>r should be at ^{*1}room co subjected to</td><td>stored for ondition. o 500</td></temp<>	pacito ature sion cy eratur	nt :Capacito 24±2 h a r should be s cycles, then /cles.	r should be at ^{*1} room co subjected to	stored for ondition. o 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	The ca temper immers <temp< td=""><td>pacito ature sion cy eratur</td><td>24±2 h a r should be s cycles, then rcles.</td><td>at *1room co subjected to</td><td>ondition. o 500</td></temp<>	pacito ature sion cy eratur	24±2 h a r should be s cycles, then rcles.	at *1room co subjected to	ondition. o 500
19		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	temper immers <temp< td=""><td>ature sion cy eratur</td><td>r should be s cycles, then /cles.</td><td>subjected to</td><td>o 500</td></temp<>	ature sion cy eratur	r should be s cycles, then /cles.	subjected to	o 500
		Capacitance change D.F. I.R. Dielectric	Char. SL : Within ±5% Char. B : Within ±10% Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	temper immers <temp< td=""><td>ature sion cy eratur</td><td>cycles, then vcles.</td><td></td><td></td></temp<>	ature sion cy eratur	cycles, then vcles.		
		D.F. I.R. Dielectric	$\begin{array}{llllllllllllllllllllllllllllllllllll$	immers <temp< td=""><td>sion cy eratur</td><td>cles.</td><td></td><td>,</td></temp<>	sion cy eratur	cles.		,
		D.F. I.R. Dielectric	Char. E : Within ±20% Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	<temp< td=""><td>eratur</td><td></td><td></td><td></td></temp<>	eratur			
		I.R. Dielectric	Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000MΩ min.	St		e cycle>		
		Dielectric	3000MΩ min.		on			
		Dielectric			.ep	Tempera	ture(°C)	Time
			Den lines 0		1	-40+0	0/-3	30 min
			Per item 3		2	Room		3 min
		strength			3	+125+		30 min
				4	4	Room	temp.	3 min
							Cycle tir	me:500 cycles
				<imme< td=""><td>ersion</td><td>cycle></td><td></td><td></td></imme<>	ersion	cycle>		
				Step	Temp	perature(°C)	Time	Immersion
						. ,		water Clean
				1	+(65+5/-0	15 min	water
								Salt
				2		0 <u>±</u> 3	15 min	water
							Cycle tir	me:2 cycles
							,	,
				Pre-tre	atmer	t: Capacito	r should be	stored at
								nd apply the
								os then placed
							n condition	
							nitial meas apply to Ch	
				Post-tr	eatme	nt : Capacit		
					ouuno		at *1room co	
¹ "ro	om condition" Tempe	rature: 15 to 35°	C, Relative humidity: 45 to 75%, Atm	ospheric p	ressu			
				• •				



Unit : mm Item Code Dimensions Remarks Ρ 15.0±2.0 Pitch of component P0 15.0±0.3 Pitch of sprocket hole F 7.5±1.0 Lead spacing Length from hole center to component center P2 7.5±1.5 Deviation of progress direction P1 3.75±1.0 Length from hole center to lead D Please refer to [Part number list]. Body diameter ΔS 0±2.0 Deviation along tape, left or right They include deviation by lead bend . W Carrier tape width 18.0±0.5 W1 9.0±0.5 Position of sprocket hole Deviation of tape width direction Lead distance between reference and bottom $18.0\pm_{0}^{2.0}$ H0 planes 0 +0.5~-1.0 Protrusion length Diameter of sprocket hole φD0 4.0±0.1 φd 0.60 ± 0.05 Lead diameter Total tape thickness t1 0.6 ± 0.3 They include hold down tape thickness. t2 Total thickness, tape and lead wire 1.5 max. Deviation across tape, front $\Delta h1$ 2.0 max. $\Delta h2$ Deviation across tape, rear 11.0±⁰_{1.0} L Portion to cut in case of defect Hold down tape width W0 11.5 min. W2 1.5±1.5 Hold down tape position Coating extension on lead е Up to the end of crimp т

Body thickness


Please refer to [Part number list].

Vertical crimp taping type < Lead Style : N7 > Pitch of component 30.0mm /Lead spacing 7.5mm

Unit : mm

			Unit . III
Item	Code	Dimensions	Remarks
Pitch of component	Р	30.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	HO	18.0± ^{2.0} ₀	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	,
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness
Deviation across tape, front	∆h1	0.0	
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].

