
Surface Mount - 400V - 800V > MAC12SM, MAC12SN

MAC12SM, MAC12SN

Pin Out

Description

Designed for industrial and consumer applications for full wave control of AC loads such as appliance controls, heater controls, motor controls, and other power switching applications.

Features

- Uniform Gate Trigger Currents in Three Quadrants, Q1,
 Q2, and Q3
- High Commutating di/dt and High Immunity to dv/dt @ 125°C
- Minimizes Snubber Networks for Protection
- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 80°C
- High Surge Current Capability 100 Amperes
- Industry Standard TO-220AB Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- These Devices are Pb-Free and are RoHS Compliant

Functional Diagram

Additional Information

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_J = 25^{\circ}$ to 100°C) MAC12HCDG MAC12HCMG		400 600	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 80$ °C)	I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 125°C)	I _{TSM}	90	А
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	33	A ² sec
Peak Gate Power (Pulse Width $\leq 1.0 \mu s$, $T_t = 80^{\circ}C$)	P _{GM}	16	W
Average Gate Power (t = 8.3 ms , $T_{c} = 80^{\circ}\text{C}$)	P _{G (AV)}	0.35	W
Operating Junction Temperature Range	T _J	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{8JC}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T _L	260	°C

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thyristors

Electrical Characteristics - **OFF** $(T_j = 25^{\circ}\text{C unless otherwise noted})$; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_{_{\rm J}} = 25^{\circ}\text{C}$	l _{DRM} ,	-	-	0.01	A
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I _{RRM}	-	-	2.0	mA

Electrical Characteristics - **ON** $(T_J = 25^{\circ}\text{C unless otherwise noted; Electricals apply in both directions)$

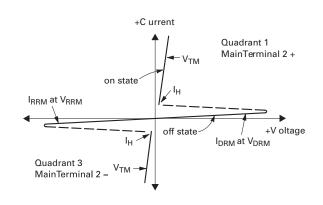
Characteristic			Min	Тур	Max	Unit
Peak On–State Voltage (Note 2) ($I_{TM} = \pm 11 \text{ A}$)		V _{TM}	-	1.2	1.85	V
	MT2(+), G(+)		-	1.5	5.0	mA
Gate Trigger Current (Continuous dc)	MT2(+), G(-)	l _{GT}	-	2.5	5.0	
$(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	MT2(-), G(-)		-	2.7	5.0	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 200 \text{ mA}$	Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 200 \text{ mA}$)			2.5	10	mA
Latching Current $(V_D = 24 \text{ V}, I_G = 50 \text{ mA})$	MT2(+), G(+)	I _L	-	3.0	15	mA
	MT2(+), G(-)		-	5.0	20	
	MT2(-), G(-)		-	3.0	15	
	MT2(+), G(+)		0.45	0.68	1.5	
Gate Trigger Voltage $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	MT2(+), G(-)	V _{GT}	0.45	0.62	1.5	V
	MT2(-), G(-)		0.45	0.67	1.5	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

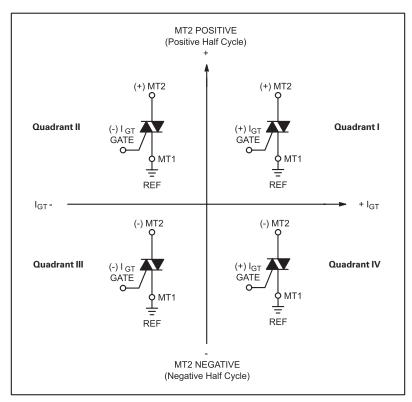
Dynamic Characteristics

Characteristic		Min	Тур	Max	Unit
Rate of Change of Commutating Current See Figure 10. ($V_D = 400 \text{ V}$, $I_{TM} = 4.4 \text{ A}$, Commutating dv/dt = 18 V/µs, Gate Open, $T_J = 125^{\circ}\text{C}$, f = 250 Hz, No Snubber) $C_L = 10 \text{ µF}$ $L_L = 40 \text{ mH}$		8.0	10	-	A/ms
Critical Rate of Rise of Off-State Voltage (VD = Rated VDRM, Exponential Waveform, Gate Open, TJ = 125°C)		15	40	-	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 µsec; diG/dt = 100 mA/µsec; lgt = 100 mA; f = 60 Hz		-	-	10	A/µs

^{2.} Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.



Surface Mount -400V - 800V > MAC12SM, MAC12SN


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Thyristors

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. Typical Gate Trigger Current vs Junction Temperature

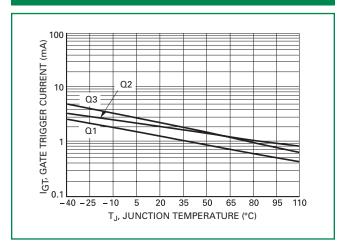


Figure 3. Typical Holding Current vs Junction Temperature

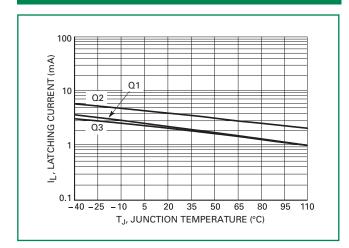


Figure 5. Typical RMS Current Derating

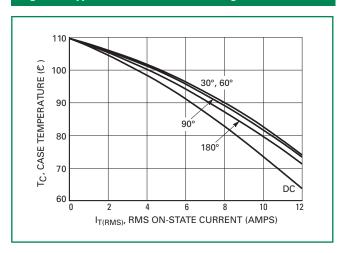


Figure 2. Typical Gate Trigger Voltage vs Junction Temperature

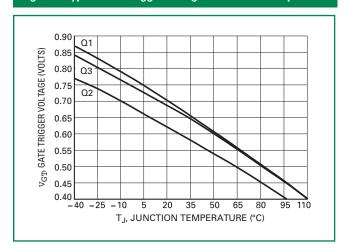


Figure 4. Typical Latching Current vs Junction Temperature

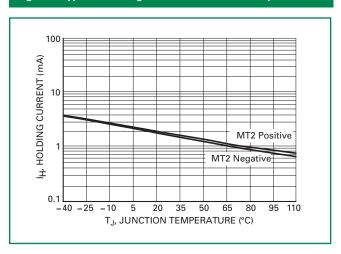
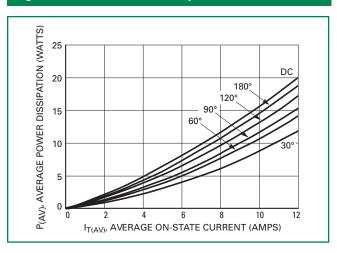
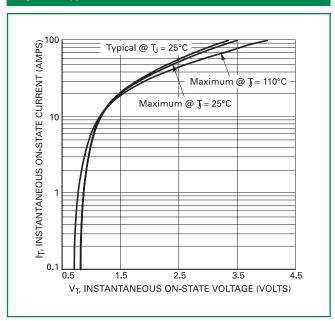
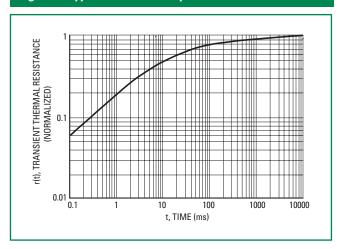
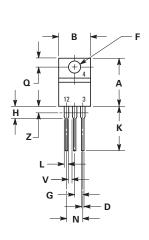




Figure 6. On-State Power Dissipation





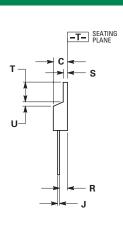
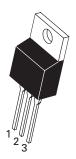
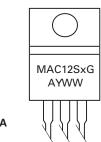

Thyristors

Figure 8. Typical Thermal Response

Dimensions





S.:	Inches		Millim	limeters		
Dim	Min	Max	Min	Max		
А	0.570	0.620	14.48	15.75		
В	0.380	0.405	9.66	10.28		
С	0.160	0.190	4.07	4.82		
D	0.025	0.035	0.64	0.88		
F	0.142	0.147	3.61	3.73		
G	0.095	0.105	2.42	2.66		
Н	0.110	0.155	2.80	3.93		
J	0.014	0.022	0.36	0.55		
K	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.15	1.52		
N	0.190	0.210	4.83	5.33		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
S	0.045	0.055	1.15	1.39		
Т	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
V	0.045		1.15			
Z		0.080		2.04		

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Part Marking System

TO-220 CASE 221A STYLE 4

M, or N

A= Assembly Location

Y= Year WW = Work Week

G = Pb-Free Package

Pin Assignment	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Ordering Information

Device	Package	Shipping
MAC12SMG	TO-220	EO Unita / Dail
MAC12SNG	(Pb-Free)	50 Units / Rail

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefuse.com/disclaimer-electronics