

0.40" Triple Digit Numeric Displays

Technical Data Sheet

Model No.: KW3-401XBB

Features:

- ◊ 0.40" (inch) digit height.
- Excellent segment uniformity.
- ♦ Sold state reliability.
- ◊ Industrial standard size.
- ♦ Low power consumption.
- ♦ The product itself will remain within RoHS compliant Version.

Descriptions:

- The KW3-401XXX series is a lager10.20mm (0.40") high seven segments display designed for viewing distances up to 7 meters.
- ◊ These displays provide excellent reliability in bright ambient light.
- \diamond These devices are made with white segments and black surface.

Applications:


- ◊ Audio equipment.
- ◊ Instrument panels.
- ◊ Digital read out display.

Device Selection Guide:

Model No.	Chip Material	Source Color	Description	
KW3-401ABB	InCoN	Blue	Common Anode	
KW3-401CBB	InGaN	Blue	Common Cathode	

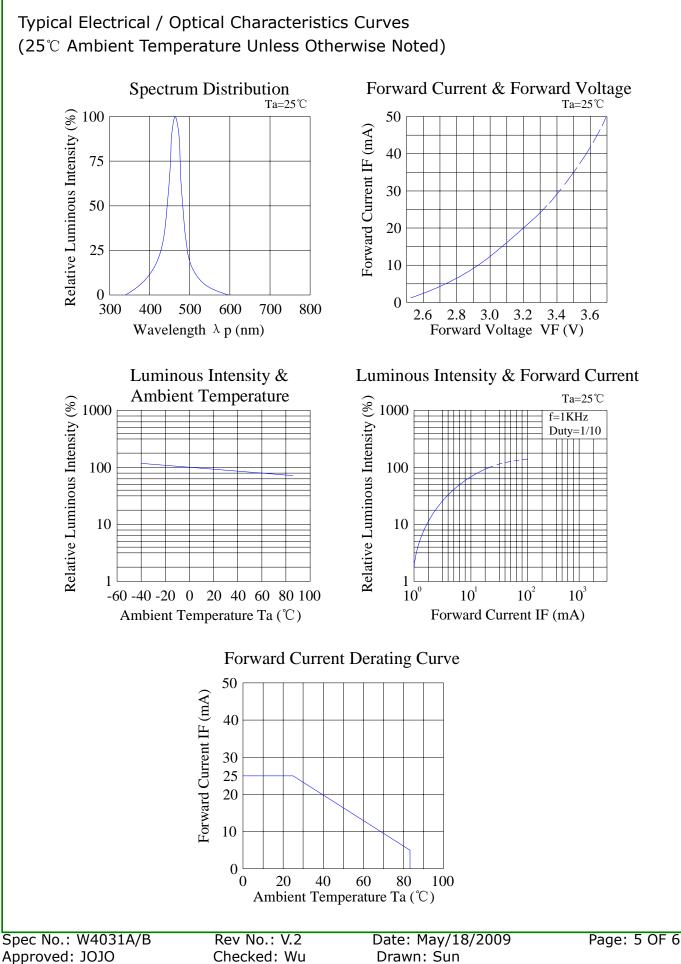
Package Dimension:

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25 mm (.010") unless otherwise noted.
- 3. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25°C

Parameters	Symbol	Max.	Unit	
Power Dissipation Per Segment	PD	100	mW	
Peak Forward Current Per Segment (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	100	mA	
Forward Current Per Segment	IF	25	mA	
Dating Linear From 50°C		0.4	mA/ ℃	
Reverse Voltage	VR	5	V	
Operating Temperature Range	Topr	-40°C to +80°C		
Storage Temperature Range	Tstg	-40℃ to +85℃		
Soldering Temperature	Tsld	260 $°$ C for 5 Seconds		


Electrical Optical Characteristics at Ta=25°C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	3.0	6.0		mcd	IF=20mA (Note 1)
Luminous Intensity Matching Ratio (Segment To Segment)	I _{v-m}			2:1		IF=10mA
Peak Emission Wavelength	λр		468		nm	IF=20mA
Dominant Wavelength	λd		470		nm	IF=20mA (Note 2)
Spectral Line Half-Width	$ riangle \lambda$		25		nm	IF=20mA
Forward Voltage	VF		3.2	4.0	V	IF=20mA
Reverse Current	IR			50	μA	VR=5V

Notes:

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Lucky Light Electronics Co., Ltd.

http://www.luckylightled.com

Please read the following notes before using the datasheets:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

- 2. Storage
 - 2.1 Do not open moisture proof bag before the products are ready to use.
 - 2.2 Before opening the package, the LEDs should be kept at 30 $^\circ\!\mathrm{C}$ or less and 90%RH or less.
 - 2.3 The LEDs should be used within a year.
 - 2.4 After opening the package, the LEDs should be kept at 30 $^\circ\!\!\mathbb{C}$ or less and 70%RH or less.
- 3. Soldering Condition
 - 3.1 Pb-free solder temperature profile.
 - 3.2 Reflow soldering should not be done more than two times.
- 4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260° for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often

started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.