Features

- Core

- ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M3 revision 2.0 running at up to 84 MHz
- Memory Protection Unit (MPU)
- Thumb ${ }^{\text {® }}$-2 instruction set
- 24-bit SysTick Counter
- Nested Vector Interrupt Controller
- Memories
- From 256 to 512 Kbytes embedded Flash, 128-bit wide access, memory accelerator, dual bank
- From 32 to 100 Kbytes embedded SRAM with dual banks
- 16 Kbytes ROM with embedded bootloader routines (UART, USB) and IAP routines
- Static Memory Controller (SMC): SRAM, NOR, NAND support. NAND Flash controller with 4-kbyte RAM buffer and ECC
- System
- Embedded voltage regulator for single supply operation
- POR, BOD and Watchdog for safe reset
- Quartz or ceramic resonator oscillators: 3 to 20 MHz main and optional low power 32.768 kHz for RTC or device clock.
- High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz Default Frequency for fast device startup
- Slow Clock Internal RC oscillator as permanent clock for device clock in low power mode
- One PLL for device clock and one dedicated PLL for USB 2.0 High Speed Mini Host/Device
- Temperature Sensor
- Up to 17 peripheral DMA (PDC) channels and 6-channel central DMA plus dedicated DMA for High-Speed USB Mini Host/Device and Ethernet MAC
- Low Power Modes
- Sleep and Backup modes, down to $2.5 \mu \mathrm{~A}$ in Backup mode.
- Backup domain: VDDBU pin, RTC, eight 32-bit backup registers
- Ultra Low-power RTC
- Peripherals
- USB 2.0 Device/Mini Host: 480 Mbps, 4-kbyte FIFO, up to 10 bidirectional Endpoints, dedicated DMA
- Up to 4 USARTs (ISO7816, IrDA ${ }^{\circledR}$, Flow Control, SPI, Manchester and LIN support) and one UART
- 2 TWI (I2C compatible), up to 6 SPIs, 1 SSC (I2S), 1 HSMCI (SDIO/SD/MMC) with up to 2 slots
- 9-Channel 32-bit Timer/Counter (TC) for capture, compare and PWM mode, Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
- Up to 8-channel 16-bit PWM (PWMC) with Complementary Output, Fault Input, 12bit Dead Time Generator Counter for Motor Control
- 32-bit Real Time Timer (RTT) and RTC with calendar and alarm features
- 16-channel 12-bit 1Msps ADC with differential input mode and programmable gain stage
- One 2-channel 12-bit 1 Msps DAC
- One Ethernet MAC 10/100 (EMAC) with dedicated DMA
- Two CAN Controller with eight Mailboxes
- One True Random Number Generator (TRNG)
- Write Protected Registers
- I/O
- Up to 103 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-die Series Resistor Termination
- Up to Six 32-bit Parallel Input/Outputs (PIO)
- Packages
- 100-lead LQFP, $14 \times 14 \mathrm{~mm}$, pitch 0.5 mm
- 100-ball LFBGA, $9 \times 9 \mathrm{~mm}$, pitch 0.8 mm
- 144-lead LQFP, $20 \times 20 \mathrm{~mm}$, pitch 0.5 mm
- 144-ball LFBGA, $10 \times 10 \mathrm{~mm}$, pitch 0.8 mm

1. SAM3X/A Description

Atmel's SAM3X/A series is a member of a family of Flash microcontrollers based on the high performance 32 -bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of 84 MHz and features up to 512 Kbytes of Flash and up to 100 Kbytes of SRAM. The peripheral set includes a High Speed USB Host and Device port with embedded transceiver, an Ethernet MAC, $2 x$ CANs, a High Speed MCI for SDIO/SD/MMC, an External Bus Interface with NAND Flash controller, $5 x$ UARTs, $2 x$ TWIs, $4 x$ SPIs, as well as 1 PWM timer, $9 x$ general-purpose 32bit timers, an RTC, a 12-bit ADC and a 12 -bit DAC.

The SAM3X/A series is ready for capacitive touch thanks to the QTouch library, offering an easy way to implement buttons, wheels and sliders.
The SAM3X/A architecture is specifically designed to sustain high speed data transfers. It includes a multi-layer bus matrix as well as multiple SRAM banks, PDC and DMA channels that enable it to run tasks in parallel and maximize data throughput.
It operates from 1.62 V to 3.6 V and is available in 100- and 144-pin QFP and LFBGA packages.
The SAM3X/A devices are particularly well suited for networking applications: industrial and home/building automation, gateways.

1.1 Configuration Summary

The SAM3X/A series devices differ in memory sizes, package and features list. Table 1-1 below summarizes the configurations.

Table 1-1. Configuration Summary

Feature	SAM3X8E	SAM3X8C	SAM3X4E	SAM3X4C	SAM3A8C	SAM3A4C
Flash	2×256 Kbytes	2×256 Kbytes	2×128 Kbytes	2×128 Kbytes	2×256 Kbytes	2×128 Kbytes
SRAM	$64+32$ Kbytes	$64+32$ Kbytes	$32+32$ Kbytes	$32+32$ Kbytes	$64+32$ Kbytes	$\begin{aligned} & 32+32 \\ & \text { Kbytes } \end{aligned}$
Nand Flash Controller (NFC)	Yes	-	Yes	-	-	-
NFC SRAM ${ }^{(1)}$	4K bytes	-	4 K bytes	-	-	-
Package	LQFP144 LFBGA144	LQFP100 LFBGA100	LQFP144 LFBGA144	LQFP100 LFBGA100	LQFP100 LFBGA100	LQFP100 LFBGA100
Number of PIOs	103	63	103	63	63	63
SHDN Pin	Yes	No	Yes	No	No	No
EMAC	MII/RMII	RMII	MII/RMII	RMII	-	-
External Bus Interface	16-bit data, 8 chip selects, 23-bit address	-	16-bit data, 8 chip selects, 23-bit address	-	-	-
Central DMA	6	4	6	4	4	4
12-bit ADC	$16 \mathrm{ch} .{ }^{(2)}$					
12-bit DAC	2 ch.					
32-bit Timer	$9^{(5)}$	$9^{(6)}$	$9^{(5)}$	$9^{(6)}$	$9^{(5)}$	$9^{(5)}$
PDC Channels	17	15	17	15	15	15
USART/ UART	$3 / 2^{(7)}$	3/1	$3 / 2^{(7)}$	3/1	3/1	3/1
SPI ${ }^{(3)}$	$1 / 4+3$	$1 / 4+3$	$1 / 4+3$	$1 / 4+3$	$1 / 4+3$	$1 / 4+3$
HSMCI	1 slot 8 bits	1 slot 4 bits	1 slot 8 bits	1 slot 4 bits	1 slot 4 bits	1 slot 4 bits

Notes: 1. 4 Kbytes RAM buffer of the NAND Flash Controller (NFC) which can be used by the core if not used by the NFC
2. One channel is reserved for internal temperature sensor
3. $2 / 8+4=$ Number of SPI Controllers $/$ Number of Chip Selects + Number of USART with SPI Mode
4. 9 TC channels are accessible through PIO
5. 6 TC channels are accessible through PIO
6. 3 TC channels are accessible through PIO
7. USART3 in UART mode (RXD3 and TXD3 available)

2. SAM3X/A Block Diagram

Figure 2-1. SAM3A4/8C (100 pins) Block Diagram

Figure 2-2. SAM3X4/8C (100 pins) Block Diagram

A告酉!

Figure 2-3. SAM3X4/8E (144 pins) Block Diagram

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.
Table 3-1. \quad Signal Description List

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
Power Supplies					
VDDIO	Peripherals I/O Lines Power Supply	Power			1.62 V to 3.6V
VDDUTMI	USB UTMI+ Interface Power Supply	Power			3.0 V to 3.6 V
VDDOUT	Voltage Regulator Output	Power			
VDDIN	Voltage Regulator, ADC and DAC Power Supply	Power			
GNDUTMI	USB UTMI+ Interface Ground	Ground			
VDDBU	Backup I/O Lines Power Supply	Power			1.62 V to 3.6 V
GNDBU	Backup Ground	Ground			
VDDPLL	PLL A, UPLL and Oscillator Power Supply	Power			1.62 V to 1.95 V
GNDPLL	PLL A, UPLL and Oscillator Ground	Ground			
VDDANA	ADC and DAC Analog Power Supply	Power			2.0 V to 3.6V
GNDANA	ADC and DAC Analog Ground	Ground			
VDDCORE	Core Chip Power Supply	Power			1.62 V to 1.95 V
GND	Ground	Ground			
Clocks, Oscillators and PLLs					
XIN	Main Oscillator Input	Input		VDDPLL	
XOUT	Main Oscillator Output	Output			
XIN32	Slow Clock Oscillator Input	Input		VDDBU	
XOUT32	Slow Clock Oscillator Output	Output			
VBG	Bias Voltage Reference	Analog			
PCK0 - PCK2	Programmable Clock Output	Output			
Shutdown, Wakeup Logic					
SHDN	Shut-Down Control	Output		VDDBU	0 : The device is in backup mode 1: The device is running (not in backup mode)
FWUP	Force Wake-up Input	Input		VDDBU	Needs external Pullup

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
ICE and JTAG					
TCK/SWCLK	Test Clock/Serial Wire Clock	Input		VDDIO	Reset State: - SWJ-DP Mode - Internal pull-up disabled ${ }^{(1)}$
TDI	Test Data In	Input			
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output			
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O			
JTAGSEL	JTAG Selection	Input	High	VDDBU	Permanent Internal pull-down
Flash Memory					
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	VDDIO	Pull-down resistor
Reset/Test					
NRST	Microcontroller Reset	I/O	Low	VDDIO	Pull-up resistor
NRSTB	Asynchronous Microcontroller Reset	Input	Low	VDDBU	Pull-up resistor
TST	Test Mode Select	Input		VDDBU	Pull-down resistor
Universal Asynchronous Receiver Transceiver - UART					
URXD	UART Receive Data	Input			
UTXD	UART Transmit Data	Output			

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE					
PAO-PA31	Parallel IO Controller A	I/O		VDDIO	-Schmitt Trigger ${ }^{(3)}$ Reset State: -PIO Input -Internal pull-up enabled
PB0-PB31	Parallel IO Controller B	I/O			-Schmitt Trigger ${ }^{(4)}$ Reset State: -PIO Input - Internal pull-up enabled
PC0-PC30	Parallel IO Controller C	I/O			-Schmitt Trigger ${ }^{(5)}$ Reset State: -PIO Input -Internal pull-up enabled
PD0-PD30	Parallel IO Controller D	I/O			-Schmitt Trigger ${ }^{(6)}$ Reset State: -PIO Input - Internal pull-up enabled
PE0-PE31	Parallel IO Controller E	I/O			- Schmitt Trigger ${ }^{(7)}$ Reset State: - PIO Input -Internal pull-up enabled
PF0-PF6	Parallel IO Controller F	I/O			- Schmitt Trigger ${ }^{(7)}$ Reset State: - PIO Input - Internal pull-up enabled
External Memory Bus					
D0-D15	Data Bus	I/O			Pulled-up input at reset
A0-A23	Address Bus	Output			0 at reset
Static Memory Controller - SMC					
NCS0 - NCS7	Chip Select Lines	Output	Low		
NWR0 - NWR1	Write Signal	Output	Low		
NRD	Read Signal	Output	Low		
NWE	Write Enable	Output	Low		
NBS0-NBS1	Byte Mask Signal	Output	Low		
NWAIT	External Wait Signal	Input	Low		

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
NAND Flash Controller-NFC					
NANDOE	NAND Flash Output Enable	Output	Low		
NANDWE	NAND Flash Write Enable	Output	Low		
NANDRDY	NAND Ready	Input			
NANDCLE	NAND Flash Command Line Enable	Output	Low		
NANDALE	NAND Flash Address Line Enable	Output	Low		
High Speed Multimedia Card Interface HSMCI					
MCCK	Multimedia Card Clock	I/O			
MCCDA	Multimedia Card Slot A Command	I/O			
MCDAO - MCDA7	Multimedia Card Slot A Data	I/O			
MCCDB	Multimedia Card Slot B Command	I/O			
MCDB0 - MCDB3	Multimedia Card Slot A Data	I/O			
Universal Synchronous Asynchronous Receiver Transmitter USARTx					
SCKx	USARTx Serial Clock	I/O			
TXDx	USARTx Transmit Data	I/O			
RXDx	USARTx Receive Data	Input			
RTSx	USARTx Request To Send	Output			
CTSx	USARTx Clear To Send	Input			
Ethernet MAC 10/100 - EMAC					
EREFCK	Reference Clock	Input		RMII only	
ETXCK	Transmit Clock	Input		MII only	
ERXCK	Receive Clock	Input		MII only	
ETXEN	Transmit Enable	Output			
ETX0-ETX3	Transmit Data	Output		ETX0 - ETX1 only in RMII	
ETXER	Transmit Coding Error	Output		MII only	
ERXDV	Receive Data Valid	Input		MII only	
ECRSDV	Carrier Sense and Data Valid	Input		RMII only	
ERX0-ERX3	Receive Data	Input		ERXO ERX1 only in RMII	
ERXER	Receive Error	Input			
ECRS	Carrier Sense	Input		MII only	
ECOL	Collision Detected	Input		MII only	
EMDC	Management Data Clock	Output			
EMDIO	Management Data Input/Output	I/O			
CAN Controller - CANx					

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
CANRXx	CAN Input	Input			
CANTXx	CAN Output	Output			
Synchronous Serial Controller - SSC					
TD	SSC Transmit Data	Output			
RD	SSC Receive Data	Input			
TK	SSC Transmit Clock	I/O			
RK	SSC Receive Clock	I/O			
TF	SSC Transmit Frame Sync	I/O			
RF	SSC Receive Frame Sync	I/O			
Timer/Counter - TC					
TCLKx	TC Channel x External Clock Input	Input			
TIOAx	TC Channel x I/O Line A	I/O			
TIOBx	TC Channel x I/O Line B	I/O			
Pulse Width Modulation Controller- PWMC					
PWMHx	PWM Waveform Output High for channel x	Output			
PWMLx	PWM Waveform Output Low for channel x ,	Output			only output in complementary mode when dead time insertion is enabled
PWMFIx	PWM Fault Input for channel x	Input			
Serial Peripheral Interface - SPIx					
MISOx	Master In Slave Out	I/O			
MOSIx	Master Out Slave In	I/O			
SPCKx	SPI Serial Clock	1/O			
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	Low		
SPIx_NPCS1 - SPIx_NPCS3	SPI Peripheral Chip Select	Output	Low		
Two-Wire Interface- TWIx					
TWDx	TWIx Two-wire Serial Data	I/O			
TWCKx	TWIx Two-wire Serial Clock	I/O			
Analog-to-Digital Converter - ADC					
AD0 - AD14	Analog Inputs	Analog			
ADTRG	ADC Trigger	Input			
ADVREF	ADC and DAC Reference	Analog			
Digital-to-Analog Converter - DACC					
DAC0	DAC channel 0 analog output	Analog			
DAC1	DAC channel 1 analog output	Analog			
DATRG	DAC Trigger				

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Voltage Reference	Comments
Fast Flash Programming Interface					
PGMEN0-PGMEN2	Programming Enabling	Input		VDDIO	
PGMM0-PGMM3	Programming Mode	Input		VDDIO	
PGMD0-PGMD15	Programming Data	I/O		VDDIO	
PGMRDY	Programming Ready	Output	High	VDDIO	
PGMNVALID	Data Direction	Output	Low	VDDIO	
PGMNOE	Programming Read	Input	Low	VDDIO	
PGMCK	Programming Clock	Input		VDDIO	
PGMNCMD	Programming Command	Input	Low	VDDIO	
USB Mini Host/Device High Speed Device					
VBUS	USB Bus Power Measurement Port	Analog			
DFSDM	USB Full Speed Data -	Analog		VDDUTMI	
DFSDP	USB Full Speed Data +	Analog		VDDUTMI	
DHSDM	USB High Speed Data -	Analog		VDDUTMI	
DHSDP	USB High Speed Data +	Analog		VDDUTMI	
UOTGVBOF	USB VBus On/Off: Bus Power Control Port			VDDIO	
UOTGID	USB Identification: Mini Connector Identification Port			VDDIO	

Notes: 1. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this PIO line must be enabled to avoid current consumption due to floating input.
2. PIOA: Schmitt Trigger on all, except PA0, PA9, PA26, PA29, PA30, PA31
3. PIOB: Schmitt Trigger on all, except PB14 and PB22
4. PIOC: Schmitt Trigger on all, except PC2 to PC9, PC15 to PC24
5. PIOD: Schmitt Trigger on all, except PD10 to PD30
6. PIOE: Schmitt Trigger on all, except PE0 to PE4, PE15, PE17, PE19, PE21, PE23, PE25, PE29
7. PIOF: Schmitt Trigger on all PIOs

3.1 Design Considerations

In order to facilitate schematic capture when using a SAM3X/A design, Atmel provides a "Schematics Checklist" Application Note. See http://www.atmel.com/products/AT91/

4. Package and Pinout

4.1 SAM3A4/8C and SAM3X4/8C Package and Pinout

The SAM3A4/8C and SAM3X4/8C are available in 100-lead LQFP and 100-ball LFBGA packages.

4.1.1 100-lead LQFP Package Outline

Figure 4-1. Orientation of the 100 -lead LQFP Package

4.1.2 100-ball LFBGA Package Outline

Figure 4-2. Orientation of the 100 -ball LFBGA Package

4.1.3 100-lead LQFP Pinout

Table 4-1. 100 -lead LQFP SAM3A4/8C and SAM3X4/8C Pinout

1	PB26
2	PA9
3	PA10
4	PA11
5	PA12
6	PA13
7	PA14
8	PA15
9	PA17
10	VDDCORE
11	VDDIO
12	GND
13	PA0
14	PA1
15	PA5
16	PA7
17	PA8
18	PB28
19	PB29
20	PB30
21	PB31
22	GNDPLL
23	VDDPLL
24	XOUT
25	XIN

26	DHSDP
27	DHSDM
28	VBUS
29	VBG
30	VDDUTMI
31	DFSDP
32	DFSDM
33	GNDUTMI
34	VDDCORE
35	JTAGSEL
36	XIN32
37	XOUT32
38	TST
39	VDDBU
40	FWUP
41	GND
42	VDDOUT
43	VDDIN
44	GND
45	VDDCORE
46	PB27
47	NRST
48	PA18
49	PA19
50	PA20

51	VDDANA
52	GNDANA
53	ADVREF
54	PB15
55	PB16
56	PA16
57	PA24
58	PA23
59	PA22
60	PA6
61	PA4
62	PA3
63	PA2
64	PB12
65	PB13
66	PB17
67	PB18
68	PB19
69	PB20
70	PB21
71	VDDCORE
72	VDDIO
73	GND
74	PA21
75	PA25

76	PA26
77	PA27
78	PA28
79	PA29
80	PB0
81	PB1
82	PB2
83	PB3
84	PB4
85	PB5
86	PB6
87	PB7
88	PB8
89	VDDCORE
90	VDDIO
91	GND
92	PB9
93	PB10
94	PB11
95	PC0
96	PB14
97	PB22
98	PB23
99	PB24
100	PB25

4.1.4 100-ball LFBGA Pinout

Table 4-2. 100 -ball LFBGA SAM3X4/8E Package and Pinout

A1	PB26
A2	PB24
A3	PB22
A4	PB14
A5	PC0
A6	PB9
A7	PB6
A8	PB2
A9	PA28
A10	PA26
B1	PA11
B2	PB25
B3	PB23
B4	PA10
B5	PA9
B6	PB10
B7	PB7
B8	PB3
B9	PA29
B10	PA27
C1	PA12
C2	PA14
C3	PA13
C4	PA17
C5	PA15

C6	PB11
C7	PB8
C8	PB4
C9	PB0
C10	PA25
D1	PA5
D2	PA0
D3	PA1
D4	VDDCORE
D5	VDDIO
D6	VDDCORE
D7	VDDCORE
D8	PB5
D9	PB1
D10	PA21
E1	PB28
E2	PA7
E3	PA8
E4	VDDCORE
E5	GND
E6	GND
E7	VDDIO
E8	PB19
E9	PB20
E10	PB21

F1	VDDPLL
F2	GNDPLL
F3	PB30
F4	PB29
F5	GND
F6	GND
F7	VDDIO
F8	PB13
F9	PB17
F10	PB18
G1	XOUT
G2	VDDUTMI
G3	PB31
G4	GNDBU
G5	PB27
G6	PA18
G7	PA20
G8	PA3
G9	PA2
G10	PB12
H1	XIN
H2	GNDUTMI
H3	TST
H4	VDDBU
H5	WAKEUP

H6	NRST
H7	PA19
H8	PA4
H9	PA6
H10	PA22
J1	VBUS
J2	DHSDP
J3	DHSDM
J4	JTAGSEL
J5	XIN32
J6	VDDIN
J7	PA23
J8	PA24
J9	PB16
J10	PA16
K1	VBG
K2	DFSDP
K3	DFSDM
K4	VDDCORE
K5	XOUT32
K6	VDDOUT
K7	VDDANA
K8	GNDANA
K9	ADVREF
K10	PB15

4.2 SAM3X4/8E Package and Pinout

The SAM3X4/8E is available in 144-lead LQFP and 144-ball LFBGA packages.

4.2.1 144-lead LQFP Package Outline

Figure 4-3. Orientation of the 144 -lead LQFP Package

4.2.2 144-ball LFBGA Package Outline

The 144-Ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its dimensions are $10 \times 10 \times 1.4 \mathrm{~mm}$.

Figure 4-4. Orientation of the 144-ball LFBGA Package

4.2.3 144-lead LQFP Pinout

Table 4-3. 144 -lead LQFP SAM3X4/8E Pinout

1	PB26
2	PA9
3	PA10
4	PA11
5	PA12
6	PA13
7	PA14
8	PA15
9	PA17
10	VDDCORE
11	VDDIO
12	GND
13	PDO
14	PD1
15	PD2
16	PD3
17	PD4
18	PD5
19	PD6
20	PD7
21	PD8
22	PD9
23	PA0
24	PA1
25	PA5
26	PA7
27	PA8
28	PB28
29	PB29
30	PB30
31	PB31
32	PD10
33	GNDPLL
34	VDDPLL
35	XOUT
36	XIN

37	DHSDP
38	DHSDM
39	VBUS
40	VBG
41	VDDUTMI
42	DFSDP
43	DFSDM
44	GNDUTMI
45	VDDCORE
46	JTAGSEL
47	NRSTB
48	XIN32
49	XOUT32
50	SHDN
51	TST
52	VDDBU
53	FWUP
54	GNDBU
55	PC1
56	VDDOUT
57	VDDIN
58	GND
59	PC2
60	PC3
61	VDDCORE
62	VDDIO
63	PC5
64	PC6
65	PC7
66	PC8
67	PC9
68	PB27
69	NRST
70	PA18
71	PA19
72	PA20

73	VDDANA
74	GNDANA
75	ADVREF
76	PB15
77	PB16
78	PA16
79	PA24
80	PA23
81	PA22
82	PA6
83	PA4
84	PA3
85	PA2
86	PB12
87	PB13
88	PB17
89	PB18
90	PB19
91	PB20
92	PB21
93	PC11
94	PC12
95	PC13
96	PC14
97	PC15
98	PC16
99	PC17
100	PC18
101	PC19
102	PC29
103	PC30
104	VDDCORE
105	VDDIO
106	GND
107	PA21
108	PA25

109	PA26
110	PA27
111	PA28
112	PA29
113	PB0
114	PB1
115	PB2
116	PC4
117	PC10
118	PB3
119	PB4
120	PB5
121	PB6
122	PB7
123	PB8
124	VDDCORE
125	VDDIO
126	GND
127	PB9
128	PB10
129	PB11
130	PC0
131	PC20
132	PC21
133	PC22
134	PC23
135	PC24
136	PC25
137	PC26
138	PC27
139	PC28
140	PB14
141	PB22
142	PB23
143	PB24
144	PB25

4.2.4 144-ball LFBGA Pinout

Table 4-4. 144-ball LFBGA SAM3X4/8E Pinout

A1	PA9	D1	PA17	G1	PA5	K1	VDDCORE
A2	PB23	D2	PD0	G2	PA7	K2	GNDUTMI
A3	PB14	D3	PA11	G3	PA8	K3	VDDPLL
A4	PC26	D4	PA15	G4	PA1	K4	NRSTB
A5	PC24	D5	PA14	G5	GND	K5	SHDN
A6	PC20	D6	PC27	G6	GND	K6	PC3
A7	PB10	D7	PC25	G7	GND	K7	PC6
A8	PB6	D8	VDDIO	G8	PC16	K8	PC7
A9	PB4	D9	PB5	G9	PC15	K9	PA18
A10	PC4	D10	PB0	G10	PC13	K10	PA23
A11	PA28	D11	PC30	G11	PB13	K11	PA16
A12	PA27	D12	PC19	G12	PB18	K12	PA24
B1	PA10	E1	PD1	H1	XOUT	L1	DHSDP
B2	PB26	E2	PD2	H2	PB30	L2	DHSDM
B3	PB24	E3	PD3	H3	PB28	L3	VDDUTMI
B4	PC28	E4	PD4	H4	PB29	L4	JTAGSEL
B5	PC23	E5	PD5	H5	VDDBU	L5	GNDBU
B6	PC0	E6	VDDCORE	H6	VDDCORE	L6	PC1
B7	PB9	E7	VDDCORE	H7	VDDIO	L7	PC2
B8	PB8	E8	VDDCORE	H8	PC12	L8	PC5
B9	PB3	E9	PB1	H9	PC11	L9	PC9
B10	PB2	E10	PC18	H10	PA3	L10	PA20
B11	PA26	E11	PB19	H11	PB12	L11	VDDANA
B12	PA25	E12	PB21	H12	PA2	L12	PB16
C1	PA13	F1	PD8	J1	XIN	M1	DFSDP
C2	PA12	F2	PD6	J2	GNDPLL	M2	DFSDM
C3	PB25	F3	PD9	J3	PD10	M3	VBG
C4	PB22	F4	PA0	J4	PB31	M4	VBUS
C5	PC22	F5	PD7	J5	TST	M5	XIN32
C6	PC21	F6	GND	J6	FWUP	M6	XOUT32
C7	PB11	F7	GND	J7	PB27	M7	VDDOUT
C8	PB7	F8	VDDIO	J8	NRST	M8	VDDIN
C9	PC10	F9	PC17	J9	PA19	M9	PC8
C10	PA29	F10	PC14	J10	PA22	M10	GNDANA
C11	PA21	F11	PB20	J11	PA4	M11	ADVREF
C12	PC29	F12	PB17	J12	PA6	M12	PB15

5. Power Considerations

5.1 Power Supplies

The SAM3X/A series product has several types of power supply pins:

- VDDCORE pins: Power the core, the embedded memories and the peripherals; voltage ranges from 1.62 V to 1.95 V .
- VDDIO pins: Power the Peripherals I/O lines; voltage ranges from 1.62 V to 3.6 V .
- VDDIN pin: Powers the Voltage regulator
- VDDOUT pin: It is the output of the voltage regulator.
- VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage ranges from 1.62 V to 3.6 V . VDDBU must be supplied before or at the same time than VDDIO and VDDCORE.
- VDDPLL pin: Powers the PLL A, UPLL and 3-20 MHz Oscillator; voltage ranges from 1.62V to 1.95 V .
- VDDUTMI pin: Powers the UTMI+ interface; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDANA pin: Powers the ADC and DAC cells; voltage ranges from 2.0 V to 3.6 V .

Ground pins GND are common to VDDCORE and VDDIO pins power supplies.
Separated ground pins are provided for VDDBU, VDDPLL, VDDUTMI and VDDANA. These ground pins are respectively GNDBU, GNDPLL, GNDUTMI and GNDANA.

5.2 Voltage Regulator

The SAM3X/A series embeds a voltage regulator that is managed by the Supply Controller.
This internal regulator is intended to supply the internal core of SAM3X/A series but can be used to supply other parts in the application. It features two different operating modes:

- In Normal mode, the voltage regulator consumes less than $700 \mu \mathrm{~A}$ static current and draws 150 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current. In Wait Mode or when the output current is low, quiescent current is only $7 \mu \mathrm{~A}$.
- In Shutdown mode, the voltage regulator consumes less than $1 \mu \mathrm{~A}$ while its output is driven internally to GND. The default output voltage is 1.80 V and the start-up time to reach Normal mode is inferior to $400 \mu \mathrm{~s}$.
For adequate input and output power supply decoupling/bypassing, refer to "Voltage Regulator" in the "Electrical Characteristics" section of the product datasheet.

5.3 Typical Powering Schematics

The SAM3X/A series supports a $1.62 \mathrm{~V}-3.6 \mathrm{~V}$ single supply mode. The internal regulator input connected to the source and its output feeds VDDCORE. Figure 5-1 shows the power schematics.

Figure 5-1. Single Supply

Note: Restrictions
For USB, VDDUTMI needs to be greater than 3.0 V .
For ADC, VDDANA needs to be greater than 2.0 V .
For DAC, VDDANA needs to be greater than 2.4 V .

Figure 5-2. Core Externally Supplied

Note: Restrictions
For USB, VDDUTMI needs to be greater than 3.0V.
For ADC, VDDANA needs to be greater than 2.0V.
For DAC, VDDANA needs to be greater than 2.4 V .

Note: Backup Batteries Used

Note: 1. Restrictions
For USB, VDDUTMI needs to be greater than 3.0V.
For ADC, VDDANA needs to be greater than 2.0V.
For DAC, VDDANA needs to be greater than 2.4 V .
2. VDDUTMI and VDDANA cannot be left unpowered.

5.4 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.

5.5 Low Power Modes

The various low power modes of the SAM3X/A series are described below:

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time ($<0.5 \mathrm{~ms}$).

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz Oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

Backup Mode is based on the Cortex-M3 deep-sleep mode with the voltage regulator disabled.
The SAM3X/A series can be awakened from this mode through the Force Wake-up pin (FWUP), and Wake-up input pins WKUP0 to WKUP15, Supply Monitor, RTT or RTC wake-up event. Current Consumption is $2.5 \mu \mathrm{~A}$ typical on VDDBU.
Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the System Control Register of the Cortex-M3 set to 1. (See the Power management description in the "ARM Cortex M3 Processor" section of the product datasheet).

Exit from Backup mode happens if one of the following enable wake up events occurs:

- FWUP pin (low level, configurable debouncing)
- WKUPENO-15 pins (level transition, configurable debouncing)
- SM alarm
- RTC alarm
- RTT alarm

5.5.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than $10 \mu \mathrm{~s}$.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to wake-up the core (WFE). This is done by configuring the external lines WKUP0-15 as fast startup wake-up pins (refer to Section 5.7 "Fast Start-Up"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU (exit from WFE).

Current Consumption in Wait mode is typically $23 \mu \mathrm{~A}$ for total current consumption if the internal voltage regulator is used or $15 \mu \mathrm{~A}$ if an external regulator is used.

Entering Wait Mode:

- Select the 4/8/12 MHz Fast RC Oscillator as Main Clock
- Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
- Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective entry in Wait mode. Depending on the user application, Waiting for MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired instructions.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM $=0$ in PMC_FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake-up sources can be individually configured. Table $5-1$ below shows a summary of the configurations of the low power modes.

Table 5-1. Low Power Mode Configuration Summary

Mode	VDDBU Region ${ }^{(1)}$	Regulator	Core Memory Peripherals	Mode Entry	Potential Wake-up Sources	Core at Wake-up	PIO State while in Low Power Mode	PIO State at Wake-up	Consumption (2) (3)	$\begin{aligned} & \text { Wake-up } \\ & \text { Time }^{(4)} \end{aligned}$
Backup Mode	ON	$\begin{gathered} \text { OFF } \\ \text { SHDN }=0 \end{gathered}$	OFF (Not powered)	$\begin{gathered} \text { WFE } \\ + \text { SLEEPDEEP } \\ \text { bit }=1 \end{gathered}$	FWUP pin WKUP0-15 pins BOD alarm RTC alarm RTT alarm	Reset	Previous state saved	 PIOF Inputs with pull-ups	$2.5 \mu \mathrm{Atyp}{ }^{(5)}$	$<0.5 \mathrm{~ms}$
Wait Mode	ON	$\begin{gathered} \text { ON } \\ \text { SHDN }=1 \end{gathered}$	Powered (Not clocked)	WFE +SLEEPDEEP bit $=0$ + LPM bit = 1	Any Event from: Fast startup through WKUPO-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	$18.4 \mu \mathrm{~A} / 26.6 \mu \mathrm{~A}{ }^{(6)}$	< $10 \mu \mathrm{~s}$
Sleep Mode	ON	$\begin{gathered} \text { ON } \\ \text { SHDN }=1 \end{gathered}$	Powered ${ }^{(7)}$ (Not clocked)	$\begin{gathered} \text { WFE or WFI } \\ \text { +SLEEPDEEP } \\ \text { bit }=0 \\ + \text { LPM bit }=0 \end{gathered}$	Entry mode = WFI Interrupt Only; Entry mode = WFE Any Enabled Interrupt and/or Any Event from Fast start-up through WKUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	(7)	(7)

Notes: 1. SUPC, 32 kHz Oscillator, RTC, RTT, Backup Registers, POR
2. The external loads on PIOs are not taken into account in the calculation.
3. BOD current consumption is not included.
4. When considering the wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the $4 / 8 / 12 \mathrm{MHz}$ Fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake-up until the first instruction is fetched
5. Current consumption on VDDBU.
6. $18.4 \mu \mathrm{~A}$ on VDDCORE, $26.6 \mu \mathrm{~A}$ for total current consumption (using internal voltage regulator).
7. Depends on MCK frequency. In this mode, the core is supplied and not clocked but some peripherals can be clocked.
5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply.

Figure 5-3. Wake-up Source

A11臬

5.7 Fast Start-Up

The SAM3X/A series allows the processor to restart in a few microseconds while the processor is in wait mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs.

The fast restart circuitry, as shown in Figure 5-4, is fully asynchronous and provides a fast startup signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded $4 / 8 / 12 \mathrm{MHz}$ fast RC oscillator, switches the master clock on this $4 / 8 / 12 \mathrm{MHz}$ clock and reenables the processor clock.

Figure 5-4. Fast Start-Up Sources

6. Input/Output Lines

The SAM3X/A has different kinds of input/output (I/O) lines, such as general purpose I/Os (GPIO) and system I/Os. GPIOs can have alternate functions thanks to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in IO mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.

With a few exceptions, the I/Os have input schmitt triggers. Refer to the footnotes associated with PIOA to PIOF on page 14, at the end of Table 3-1, "Signal Description List".

6.1 General Purpose I/O Lines (GPIO)

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up, input schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to the "PIO Controller" section of the product datasheet.

The input output buffers of the PIO lines are supplied through VDDIO power supply rail.
The SAM3X/A embeds high speed pads able to handle up to 65 MHz for HSMCI and SPI clock lines and 45 MHz on other lines. See product AC Characteristics for more details. Typical pull-up value is $100 \mathrm{k} \Omega$ for all I / Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). ODT consists of an internal series resistor termination scheme for impedance matching between the driver output (SAM3) and the PCB track impedance preventing signal reflection. The series resistor helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards. In conclusion, ODT helps reducing signal integrity issues.

Figure 6-1. On-Die Termination

6.2 System I/O Lines

System I/O lines are pins used by oscillators, test mode, reset, flash erase and JTAG to name but a few. Described below are the SAM3X/A system I/O lines shared with PIO lines.

These pins are software configurable as general purpose I/O or system pins. At startup, the default function of these pins is always used.

Table 6-1. \quad System I/O Configuration Pin List

SYSTEM_IO Bit Number	Peripheral	Default Function After Reset	Other Function	Constraints for Normal Start	Configuration
12	-	ERASE	PC0	Low Level at startup)	In Matrix User Interface Registers (Refer to "System IO Configuration Register" in the "Bus Matrix" section of the product datasheet.)
	A	TCK/SWCLK	PB28	-	
	A	TDI	PB29	-	In PIO Controller
	A	TDO/TRACESWO	PB30	-	

Note: 1. If PCO is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the user application sets PCO into PIO mode.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20 -pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the "Debug and Test" section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users with more general input/output pins when the debug port is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the "Debug and Test" section of the product datasheet.

All JTAG signals are supplied with VDDIO except JTAGSEL, supplied by VDDBU.

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM3X/A series. The TST pin integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations. To enter fast programming mode, see the "Fast Flash Programming Interface" section. For more information on the manufacturing and test mode, refer to the "Debug and Test" section of the product datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components, or asserted low externally to reset the microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length.

The NRST pin integrates a permanent pull-up resistor to VDDIO of about $100 \mathrm{k} \Omega$

6.5 NRSTB Pin

The NRSTB pin is input only and enables asynchronous reset of the SAM3X/A series when asserted low. The NRSTB pin integrates a permanent pull-up resistor of about $15 \mathrm{k} \Omega$ This allows connection of a simple push button on the NRSTB pin as a system-user reset. In all modes, this pin will reset the chip including the Backup region (RTC, RTT and Supply Controller). It reacts as the Power-on reset. It can be used as an external system reset source. In harsh environments, it is recommended to add an external capacitor (10 nF) between NRSTB and VDDBU. (For filtering values, refer to "I/O characteristics" in the "Electrical Characteristics" section of the product datasheet)
It embeds an anti-glitch filter.

6.6 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as logic level 1). It integrates a pull-down resistor of about $100 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100 ms , it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, the startup level of this pin must be low to prevent unwanted erasing. Please refer to Section 11.2 "Peripheral Signal Multiplexing on I/O Lines". Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

7. Processor and Architecture

7.1 ARM Cortex-M3 Processor

- Version 2.0
- Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16 -bit and 32 -bit.
- Harvard processor architecture enabling simultaneous instruction fetch with data load/store.
- Three-stage pipeline.
- Single cycle 32-bit multiply.
- Hardware divide.
- Thumb and Debug states.
- Handler and Thread modes.
- Low latency ISR entry and exit.

7.2 APB/AHB Bridge

The SAM3X/A series product embeds two separate APB/AHB bridges:

- a low speed bridge
- a high speed bridge

This architecture enables a concurrent access on both bridges.
SPI, SSC and HSMCI peripherals are on the high-speed bridge connected to DMAC with the internal FIFO for Channel buffering.
UART, ADC, TWIO-1, USART0-3, PWM, DAC and CAN peripherals are on the low-speed bridge and have dedicated channels for the Peripheral DMA Channels (PDC). Please not that USARTO-1 can be used with the DMA as well.

The peripherals on the high speed bridge are clocked by MCK. On the low-speed bridge, CAN controllers can be clocked at MCK divided by 2 or 4 . Refer to the Power Management Controller (PMC) section of the Full datasheet for further details.

7.3 Matrix Masters

The Bus Matrix of the SAM3X/A series product manages 5 (SAM3A) or 6 (SAM3X) masters, which means that each master can perform an access, concurrently with others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all masters have the same decodings.

Table 7-1. List of Bus Matrix Masters

Master 0	Cortex-M3 Instruction/Data
Master 1	Cortex-M3 System
Master 2	Peripheral DMA Controller (PDC)
Master 3	USB OTG High Speed DMA
Master 4	DMA Controller
Master 5	Ethernet MAC (SAM3X)

7.4 Matrix Slaves

The Bus Matrix of the SAM3X/A series product manages 9 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 7-2. List of Bus Matrix Slaves

Slave 0	Internal SRAM0
Slave 1	Internal SRAM1
Slave 2	Internal ROM
Slave 3	Internal Flash
Slave 4	USB High Speed Dual Port RAM (DPR)
Slave 5	NAND Flash Controller RAM
Slave 6	External Bus Interface
Slave 7	Low Speed Peripheral Bridge
Slave 8	High Speed Peripheral Bridge

7.5 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example allowing access from the USB High Speed DMA to the Internal Peripherals. Thus, these paths are forbidden or simply not wired, and shown as "-" in the following table.

Table 7-3. \quad SAM3X/A Series Master to Slave Access

Masters							
Slaves	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
$\mathbf{0}$	Internal SRAM0	Cortex-M3 I/D Bus	Cortex-M3 S Bus	$\mathbf{P D C}$	USB High Speed DMA	DMA Controller	EMAC DMA
$\mathbf{1}$	Internal SRAM1	-	X	X	X	X	X
$\mathbf{2}$	Internal ROM	-	X	X	X	X	X
$\mathbf{3}$	Internal Flash	X	-	X	X	X	X
$\mathbf{4}$	USB High Speed Dual Port RAM	X	-	-	-	-	-
$\mathbf{5}$	Nand Flash Controller RAM	-	X	-	-	X	-
$\mathbf{6}$	External Bus Interface	-	X	X	X	X	X
$\mathbf{7}$	Low Speed Peripheral Bridge	-	X	X	X	X	X
$\mathbf{8}$	High Speed Peripheral Bridge	-	X	X	-	X	-

7.6 DMA Controller

- Acting as one Matrix Master
- Embeds 4 (SAM3A and 100-pin SAM3X) or 6 (144-pin SAM3X) channels

Table 7-4. DMA Channels

DMA Channel Size	SAM3A 100-pin SAM3X	144-pin SAM3X
8 bytes FIFO for Channel Buffering	3 (Channels 0, 1 and 2)	4 (Channels 0, 1, 2 and 4)
32 bytes FIFO for Channel Buffering	1 (Channel 3)	2 (Channels 3 and 5)

- Linked List support with Status Write Back operation at End of Transfer
- Word, HalfWord, Byte transfer support.
- Handles high speed transfer of SPI0-1, USART0-1, SSC and HSMCI (peripheral to memory, memory to peripheral)
- Memory to memory transfer
- Can be triggered by PWM and T/C which enables to generates waveform though the External Bus Interface
The DMA controller can handle the transfer between peripherals and memory and so receives the triggers from the peripherals below. The hardware interface numbers are also given in Table 7-5.

Table 7-5. DMA Controller

Instance Name	Channel T/R	DMA Channel HW Interface Number
HSMCI	Transmit/Receive	0
SPI0	Transmit	1
SPI0	Receive	2
SSC	Transmit	3
SSC	Receive	4
SPI1	Transmit	5
SPI1	Receive	6
TWI0	Transmit	7
TWI0	Receive	8
-	-	-
-	-	-
USART0	Transmit	11
USART0	Receive	12
USART1	Transmit	13
USART1	Receive	14
PWM	Transmit	15

7.7 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Low bus arbitration overhead
- One Master Clock cycle needed for a transfer from memory to peripheral
- Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirement

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

Table 7-6. Peripheral DMA Controller

Instance Name	Channel T/R	144 Pins	100 Pins
DAC	Transmit	X	X
PWM	Transmit	X	X
TWI1	Transmit	X	X
TWI0	Transmit	X	X
USART3	Transmit	X	X
USART2	Transmit	X	X
USART1	Transmit	X	X
USART0	Transmit	X	X
UART	Transmit	X	X
ADC	Receive	X	X
TWI1	Receive	X	X
TWI0	Receive	X	X
USART3	Receive	X	N / A
USART2	Receive	X	X
USART1	Receive	X	X
USART0	Receive	X	X
UART	Receive	X	X

7.8 Debug and Test Features

- Debug access to all memory and registers in the system, including Cortex-M3 register bank when the core is running, halted, or held in reset
- Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
- Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches
- Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling
- Instrumentation Trace Macrocell (ITM) for support of printf style debugging
- IEEE ${ }^{\circledR}$ 1149.1 JTAG Boundary-scan on all digital pins

8. Product Mapping

Figure 8-1. SAM3X/A Product Mapping

9. Memories

9.1 Embedded Memories

9.1.1 Internal SRAM

- The 100-pin SAM3A/X8 product embeds a total of 96 Kbytes high-speed SRAM (64 Kbytes SRAM0 and 32 Kbytes SRAM1).
- The 100-pin SAM3A/X4 product embeds a total of 64 Kbytes high-speed SRAM (32 Kbytes SRAM0, 32 Kbytes SRAM1).
- The 100-pin SAM3A/4 product embeds a total of 36 Kbytes high-speed SRAM (16 Kbytes SRAM0 and 16 Kbytes SRAM1).
The SRAM0 is accessible over System Cortex-M3 bus at address 0x2000 0000 and SRAM1 at address 0×2008 0000. The user can see the SRAM as contiguous thanks to mirror effect, giving $0 x 20070000-0 x 2008$ 7FFF for SAM3X/A8, 0x2007 8000-0x2008 7FFF for SAM3X/A4 and 0x2007 C000-0x2008 3FFF for SAM3X/A2.

The SRAM0 and SRAM1 are in the bit band region. The bit band alias region is mapped from 0×22000000 to 0x23FF FFFF.

The NAND Flash Controller embeds 4224 bytes of internal SRAM. If the NAND Flash controller is not used, these 4224 Kbytes of SRAM can be used as general purpose. It can be seen at address 0×20100000.

9.1.2 Internal ROM

The SAM3X/A series product embeds an Internal ROM, which contains the SAM-BA and FFPI program.

At any time, the ROM is mapped at address 0×00180000.

9.1.3 Embedded Flash

9.1.3.1 Flash Overview

- The Flash of the ATSAM3A/X8 is organized in two banks of 1024 pages (dual plane) of 256 bytes.
- The Flash of the ATSAM3A/X4 is organized in two banks of 512 pages (dual plane) of 256 bytes.
The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.
9.1.3.2 Flash Power Supply

The Flash is supplied by VDDCORE.
9.1.3.3

Enhanced Embedded Flash Controller
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped within the Memory Controller on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32bit internal bus. Its 128 -bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128 -bit or 64 -bit access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

9.1.3.4 Lock Regions

Several lock bits used to protect write and erase operations on lock regions. A lock region is composed of several consecutive pages, and each lock region has its associated lock bit.

Table 9-1. Number of Lock Bits

Product	Number of Lock Bits	Lock Region Size
ATSAM3X/A8	32	16 kbytes (64 pages)
ATSAM3X/A4	16	16 kbytes (64 pages)

If a locked-region's erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The "Set Lock Bit" command enables the protection. The "Clear Lock Bit" command unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

9.1.3.5 Security Bit Feature

The SAM3X/A series features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is enabled, any access to the Flash, either through the ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled through the "Set General Purpose NVM Bit 0" command of the EEFCO User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms .
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

9.1.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

9.1.3.7 Unique Identifier

Each device integrates its own 128 -bit unique identifier. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the unique identifier.

9.1.3.8

Fast Flash Programming Interface
The Fast Flash Programming Interface allows device programming through multiplexed fullyhandshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST, PAO, PA1 are set to high, PA2 and PA3 are set to low and NRST is toggled from 0 to 1.

The table below shows the signal assignment of the PIO lines in FFPI mode
Table 9-2. FFPI PIO Assignment

FFPI Signal	PIO Used
PGMNCMD	PAO
PGMRDY	PA1
PGMNOE	PA2
PGMNVALID	PA3
PGMM[0]	PA4
PGMM[1]	PA5
PGMM[2]	PA6
PGMM[3]	PA7
PGMD[0]	PA8
PGMD[1]	PA9
PGMD[2]	PA10
PGMD[3]	PA11
PGMD[4]	PA12
PGMD[5]	PA13
PGMD[6]	PA14
PGMD[7]	PA15
PGMD[8]	PA16
PGMD[9]	PA17
PGMD[10]	PA18
PGMD[11]	PA19
PGMD[12]	PA20
PGMD[13]	PA21
PGMD[14]	PA22
PGMD[15]	PA23

9.1.3.9 $\quad S A M-B A^{\circledR}$ Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0×0 when GPNVM bit 1 is set to 0 .

The SAM3X/A series features three GPNVM bits that can be cleared or set respectively through the "Clear GPNVM Bit" and "Set GPNVM Bit" commands of the EEFC0 User Interface.

Table 9-3. General Purpose Non-volatile Memory Bits

GPNVMBit[\#]	Function
0	Security bit
1	Boot mode selection
2	Flash selection (Flash 0 or Flash 1)

9.1.4 Boot Strategies

The system always boots at address 0×0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.
A general-purpose NVM (GPNVM1) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" commands of the EEFC User Interface.
Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears GPNVM Bit 1 and thus selects the boot from the ROM by default.
GPNVM2 enables to select if Flash 0 or Flash 1 is used for the boot.
Setting GPNVM bit 2 selects the boot from Flash 1, clearing it selects the boot from Flash 0.

9.2 External Memories

The 144-pin SAM3X features one External Memory Bus to offer interface to a wide range of external memories and to any parallel peripheral.

9.2.1 External Memory Bus

- Integrates Four External Memory Controllers:
- Static Memory Controller
- NAND Flash Controller
- SLC NAND Flash ECC Controller
- Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
- Up to 8 chip selects, Configurable Assignment

9.2.2 Static Memory Controller

- 8- or 16-bit Data Bus
- Multiple Access Modes supported
- Byte Write or Byte Select Lines
- Asynchronous read in Page Mode supported (4- up to 32-byte page size)
- Multiple device adaptability
- Control signals programmable setup, pulse and hold time for each Memory Bank
- Multiple Wait State Management
- Programmable Wait State Generation
- External Wait Request
- Programmable Data Float Time
- Slow Clock mode supported

9.2.3 NAND Flash Controller

- Handles automatic Read/write transfer through 4224 bytes SRAM buffer
- DMA support
- Supports SLC NAND Flash technology
- Programmable timing on a per chip select basis
- Programmable Flash Data width 8 -bit or 16 -bit

9.2.4 NAND Flash Error Corrected Code Controller

- Integrated in the NAND Flash Controller
- Single bit error correction and 2-bit Random detection.
- Automatic Hamming Code Calculation while writing
- ECC value available in a register
- Automatic Hamming Code Calculation while reading
- Error Report, including error flag, correctable error flag and word address being detected erroneous
- Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte pages

10. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system such as power, resets, clocks, time, interrupts, watchdog, etc...
The System Controller User Interface also embeds the registers allowing to configure the Matrix.

Figure 10-1. System Controller Block Diagram

FSTT0 - FSTT15 are possible Fast Startup Sources, generated by WKUP0-WKUP15 Pins, but are not physical pins.

10.1 System Controller and Peripherals Mapping

Please refer to Figure 8-1 on page 37.
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3X/A embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDBU
- Brownout Detector on VDDCORE
- Supply Monitor on VDDUTMI

10.2.1 Power-on-Reset on VDDBU

The Power-on-Reset monitors VDDBU. It is always activated and monitors voltage at start up but also during power down. If VDDBU goes below the threshold voltage, the entire chip is reset. For more information, refer to the "Electrical Characteristics" section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the "Supply Controller" and "Electrical Characteristics" sections of the product datasheet.

10.2.3 Supply Monitor on VDDUTMI

The Supply Monitor monitors VDDUTMI. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9 V to 3.4 V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the "SUPC" and "Electrical Characteristics" sections of the product datasheet.

10.3 Reset Controller

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

10.4 Supply Controller

The Supply Controller controls the power supplies of each section of the processor and peripherals (via Voltage regulator control).

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock generator.

The reset circuitry is based on a zero-power power-on reset cell. The zero-power power-on reset allows the Supply Controller to start properly.

A血酉

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by enabling the Voltage Regulator, then it generates the proper reset signals to the core power supply.
It also enables to set the system in different low power modes and to wake it up from a wide range of events.

10.5 Clock Generator

The Clock Generator is made up of:

- One Low Power 32,768 Hz Slow Clock Oscillator with bypass mode
- One Low Power RC Oscillator
- One 3 to 20 MHz Crystal or Ceramic-based Oscillator, which can be bypassed
- One factory-programmed Fast RC Oscillator; 3 output frequencies can be selected: 4, 8 or 12 MHz . By default, 4 MHz is selected. 8 MHz and 12 MHz output are factory-calibrated.
- One 480 MHz UPLL providing a clock for the USB OTG High Speed Controller. Input frequency is 12 MHz (only).
- One 96 to 192 MHz programmable PLL (PLLA), capable to provide the clock MCK to the processor and to the peripherals. The input frequency of the PLL A is between 8 and 16 MHz .

Figure 10-2. Clock Generator Block Diagram

10.6 Power Management Controller

The Power Management Controller provides all the clock signals to the system. It provides:

- the Processor Clock HCLK
- the Free running processor clock FCLK
- the Cortex SysTick external clock
- the Master Clock MCK, in particular to the Matrix and the memory interfaces
- the USB OTG HS Clock UOTGCK
- independent peripheral clocks, typically at the frequency of MCK
- three programmable clock outputs: PCK0, PCK1 and PCK2

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the Fast RC Oscillator running at 4 MHz .

Figure 10-3. Power Management Controller Block Diagram

The SysTick calibration value is fixed at 10500, which allows the generation of a time base of 1 ms with SystTick clock to 10.5 MHz (max HCLK/8).

10.7 Watchdog Timer

- 16-bit key-protected once-only Programmable Counter
- Windowed, prevents the processor to be in a dead-lock on the watchdog access

10.8 SysTick Timer

- 24-bit down counter
- Self-reload capability
- Flexible system timer

10.9 Real Time Timer

- Real Time Timer, allowing backup of time with different accuracies
- 32-bit Free-running back-up Counter
- Integrates a 16-bit programmable prescaler running on slow clock
- Alarm Register capable to generate a wake-up of the system

10.10 Real Time Clock

- Low power consumption
- Full asynchronous design
- Two hundred year calendar
- Programmable Periodic Interrupt
- Alarm and update parallel load
- Control of alarm and update Time/Calendar Data In

10.11 General-Purpose Backup Registers

- Eight 32-bit general-purpose backup registers

10.12 Nested Vectored Interrupt Controller

- Thirty maskable interrupts
- Sixteen priority levels
- Dynamic reprioritization of interrupts
- Priority grouping
- selection of preempting interrupt levels and non preempting interrupt levels.
- Support for tail-chaining and late arrival of interrupts.
- back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead.

10.13 Chip Identification

- Chip Identifier (CHIPID) registers permit recognition of the device and its revision.
-.JTAG ID: 0x05B2B03F

Table 10-1. ATSAM3A/X Chip IDs Register

Chip Name	CHIPID_CIDR	CHIPID_EXID
ATSAM3X8H (Rev A)	$0 \times 286 \mathrm{E} 0460$	0×0
ATSAM3X8E (Rev A)	$0 \times 285 \mathrm{E} 0$ A60	0×0
ATSAM3X4E (Rev A)	$0 \times 285 B 0960$	0×0
ATSAM3X8C (Rev A)	$0 \times 284 E 0 A 60$	0×0
ATSAM3X4C (Rev A)	$0 \times 284 B 0960$	0×0
ATSAM3A8C (Rev A)	$0 \times 283 E 0 A 60$	0×0
ATSAM3A4C (Rev A)	$0 \times 283 B 0960$	0×0

10.14 UART

- Two-pin UART
- Implemented features are 100\% compatible with the standard Atmel USART
- Independent receiver and transmitter with a common programmable Baud Rate Generator
- Even, Odd, Mark or Space Parity Generation
- Parity, Framing and Overrun Error Detection
- Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Support for two PDC channels with connection to receiver and transmitter

10.15 PIO Controllers

- Up to 6 PIO Controllers, PIOA, PIOB, PIOC, PIOD, PIOE and PIOF controlling a maximum of 167 I/O Lines
- Each PIO Controller controls up to 32 programmable I/O Lines

Table 10-2. PIO Lines per PIO according to Version

Version	100 pin SAM3X/A	144 pin SAM3X
PIOA	30	
PIOB	32	
PIOC	1	31
PIOD	-	10
PIOE	-	-
PIOF	-	-
Total	63	103

- Fully programmable through Set/Clear Registers
- Multiplexing of four peripheral functions per I/O Line
- For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
- Input change, rising edge, falling edge, low level and level interrupt
- Debouncing and Glitch filter
- Multi-drive option enables driving in open drain
- Programmable pull-up on each I/O line
- Pin data status register, supplies visibility of the level on the pin at any time
- Synchronous output, provides Set and Clear of several I/O lines in a single write

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM3X/A series. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and for the control of the peripheral clock with the Power Management Controller.
Note that some Peripherals are always clocked. Please refer to the table below.
Table 11-1. Peripheral Identifiers

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description
0	SUPC	X		Supply Controller
1	RSTC	X		Reset Controller
2	RTC	X		Real Time Clock
3	RTT	X		Real Time Timer
4	WDG	X		Watchdog Timer
5	PMC	X		Power Management Controller
6	EEFCO	X		Enhanced Flash Controller 0
7	EEFC1	X		Enhanced Flash Controller 1
8	UART	X		Universal Asynchronous Receiver Transceiver
9	SMC	X	X	Static Memory Controller
10				Reserved
11	PIOA	X	X	Parallel I/O Controller A,
12	PIOB	X	X	Parallel I/O Controller B
13	PIOC	X	X	Parallel I/O Controller C
14	PIOD	X	X	Parallel I/O Controller D
15	PIOE	X	X	Parallel I/O Controller E
16	PIOF	X	X	Parallel I/O Controller F
17	USARTO	X	X	USART 0
18	USART1	X	X	USART 1
19	USART2	X	X	USART 2
20	USART3	X	X	USART 3
21	HSMCI	X	X	Multimedia Card Interface
22	TWIO	X	X	Two-Wire Interface 0
23	TWI1	X	X	Two-Wire Interface 1
24	SPIO	X	X	Serial Peripheral Interface
25	SPI1	X	X	Serial Peripheral Interface
26	SSC	X	X	Synchronous Serial Controller
27	TC0	X	X	Timer Counter 0
28	TC1	X	X	Timer Counter 1
29	TC2	X	X	Timer Counter 2

Table 11-1. Peripheral Identifiers (Continued)

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description
$\mathbf{3 0}$	TC3	\mathbf{X}	\mathbf{X}	Timer Counter 3
31	TC4	\mathbf{X}	\mathbf{X}	Timer Counter 4
$\mathbf{3 2}$	TC5	\mathbf{X}	\mathbf{X}	Timer Counter 5
33	TC6	\mathbf{X}	\mathbf{X}	Timer Counter 6
34	TC7	\mathbf{X}	\mathbf{X}	Timer Counter 7
35	TC8	\mathbf{X}	\mathbf{X}	Timer Counter 8
$\mathbf{3 6}$	PWM	\mathbf{X}	\mathbf{X}	Pulse Width Modulation Controller
37	ADC	\mathbf{X}	\mathbf{X}	ADC Controller
38	DACC	\mathbf{X}	\mathbf{X}	DAC Controller
39	DMAC	\mathbf{X}	\mathbf{X}	DMA Controller
40	UOTGHS	\mathbf{X}	\mathbf{X}	USB OTG High Speed
41	EMAC	\mathbf{X}	\mathbf{X}	Ethernet MAC Random Number Generator
42	CAN0	\mathbf{X}	\mathbf{X}	CAN Controller 0
43	CAN1	\mathbf{X}	\mathbf{X}	CAN Controller 1
44				

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM3X/A series product features 3 PIO (SAM3A and 100-pin SAM3X) or 4 PIO (144-pin SAM3X) controllers, PIOA, PIOB, PIOC, PIOD, PIOE and PIOF, which multiplexes the I/O lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A and B are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral function, which are output only, might be duplicated within both tables.

11.2.1 PIO Controller A Multiplexing

Table 11-2. \quad Multiplexing on PIO Controller A (PIOA)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PA0	CANTX0	PWML3		
PA1	CANRX0	PCKO	WKUP0	
PA2	TIOA1	NANDRDY	AD0	
PA3	TIOB1	PWMFI1	AD1/WKUP1	
PA4	TCLK1	NWAIT	AD2	
PA5	TIOA2	PWMFIO	WKUP2	
PA6	TIOB2	NCSO	AD3	
PA7	TCLK2	NCS1	WKUP3	
PA8	URXD	PWMH0	WKUP4	
PA9	UTXD	PWMH3		
PA10	RXD0	DATRG	WKUP5	
PA11	TXD0	ADTRG	WKUP6	
PA12	RXD1	PWML1	WKUP7	
PA13	TXD1	PWMH2		
PA14	RTS1	TK		
PA15	CTS1	TF	WKUP8	
PA16	SCK1	TD	AD7	
PA17	TWD0	SCKO		
PA18	TWCK0	A20	WKUP9	
PA19	MCCK	PWMH1		
PA20	MCCDA	PWML2		
PA21	MCDAO	PWMLO		
PA22	MCDA1	TCLK3	AD4	
PA23	MCDA2	TCLK4	AD5	
PA24	MCDA3	PCK1	AD6	
PA25	SPIO_MISO	A18		
PA26	SPIO_MOSI	A19		
PA27	SPIO_SPCK	A20	WKUP10	
PA28	SPIO_NPCS0	PCK2	WKUP11	
PA29	SPIO_NPCS1	NRD		
PA30	SPIO_NPCS2	PCK1		
PA31	SPIO_NPCS3	PCK2		

11.2.2 PIO Controller B Multiplexing

Table 11-3. \quad Multiplexing on PIO Controller B (PIOB)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PB0	ETXCK/EREFCK ${ }^{(1)}$	TIOA3 ${ }^{(2)}$		See the Notes
PB1	ETXEN ${ }^{(1)}$	TIOB3 ${ }^{(2)}$		See the Notes
PB2	ETXO ${ }^{(1)}$	TIOA4 ${ }^{(2)}$		See the Notes
PB3	ETX1 ${ }^{(1)}$	TIOB4 ${ }^{(2)}$		See the Notes
PB4	ECRSDV/ERXDV ${ }^{(1)}$	TIOA5 ${ }^{(2)}$		See the Notes
PB5	ERXO ${ }^{(1)}$	TIOB5 ${ }^{(2)}$		See the Notes
PB6	ERX1 ${ }^{(1)}$	PWML4 ${ }^{(2)}$		See the Notes
PB7	ERXER ${ }^{(1)}$	PWML5 ${ }^{(2)}$		See the Notes
PB8	EMDC ${ }^{(1)}$	PWML6 ${ }^{(2)}$		See the Notes
PB9	EMDIO ${ }^{(1)}$	PWML7 ${ }^{(2)}$		See the Notes
PB10	UOTGVBOF	A18		
PB11	UOTGID	A19		
PB12	TWD1	PWMH0	AD8	
PB13	TWCK1	PWMH1	AD9	
PB14	CANTX1	PWMH2		
PB15	CANRX1	PWMH3	DAC0/WKUP12	
PB16	TCLK5	PWMLO	DAC1	
PB17	RF	PWML1	AD10	
PB18	RD	PWML2	AD11	
PB19	RK	PWML3	AD12	
PB20	TXD2	SPIO_NPCS1	AD13	
PB21	RXD2	SPIO_NPCS2	AD14/WKUP13	
PB22	RTS2	PCK0		
PB23	CTS2	SPIO_NPCS3	WKUP14	
PB24	SCK2	NCS2		
PB25	RTS0	TIOAO		
PB26	CTS0	TCLK0	WKUP15	
PB27	NCS3	TIOB0		
PB28	TCK/SWCLK			TCK after reset
PB29	TDI			TDI after reset
PB30	TDO/TRACESWO			TDO after reset
PB31	TMS/SWDIO			TMS after reset

Notes: 1. SAM3X only
2. SAM3A only

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PC0			ERASE	
PC1				144 pins
PC2	D0	PWMLO		144 pins
PC3	D1	PWMH0		144 pins
PC4	D2	PWML1		144 pins
PC5	D3	PWMH1		144 pins
PC6	D4	PWML2		144 pins
PC7	D5	PWMH2		144 pins
PC8	D6	PWML3		144 pins
PC9	D7	PWMH3		144 pins
PC10	D8	ECRS		144 pins
PC11	D9	ERX2		144 pins
PC12	D10	ERX3		144 pins
PC13	D11	ECOL		144 pins
PC14	D12	ERXCK		144 pins
PC15	D13	ETX2		144 pins
PC16	D14	ETX3		144 pins
PC17	D15	ETXER		144 pins
PC18	NWR0/NWE	PWMH6		144 pins
PC19	NANDOE	PWMH5		144 pins
PC20	NANDWE	PWMH4		144 pins
PC21	A0/NBS0	PWML4		144 pins
PC22	A1	PWML5		144 pins
PC23	A2	PWML6		144 pins
PC24	A3	PWML7		144 pins
PC25	A4	TIOA6		144 pins
PC26	A5	TIOB6		144 pins
PC27	A6	TCLK6		144 pins
PC28	A7	TIOA7		144 pins
PC29	A8	TIOB7		144 pins
PC30	A9	TCLK7		144 pins

11.2.4 PIO Controller D Multiplexing

Table 11-5. Multiplexing on PIO Controller D (PIOD)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PD0	A10	MCDA4		144 pins
PD1	A11	MCDA5		144 pins
PD2	A12	MCDA6		144 pins
PD3	A13	MCDA7	144 pins	
PD4	A14	TXD3	144 pins	
PD5	A15	RXD3	144 pins	
PD6	A16	PWMFI2	144 pins	
PD7	A17	TIOA8	144 pins	
PD8	A21/NANDALE	TIOB8	144 pins	
PD9	A22/NANDCLE	TCLK8	144 pins	
PD10	NWR1/NBS1			144 pins
PD11				
PD12				
PD13	A17			
PD14				
PD15				
PD16	A18			
PD17	A5			
PD18	A6			
PD19	A7			
PD20	A8			
PD21	A9			
PD22	A10			
PD23				
PD24				
PD25				
PD26				
PD27				

11.2.5 PIO Controller E Multiplexing

Table 11-6. Multiplexing on PIO Controller E (PIOE)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PE0	A19			
PE1	A20			
PE2	A21/NANDALE			
PE3	A22/NANDCLE			
PE4	A23			
PE5	NCS4			
PE6	NCS5			
PE7				
PE8				
PE9	TIOA3			
PE10	TIOB3			
PE11	TIOA4			
PE12	TIOB4			
PE13	TIOA5			
PE14	TIOB5			
PE15	PWMH0			
PE16	PWMH1	SCK3		
PE17	PWML2			
PE18	PWMLO	NCS6		
PE19	PWML4			
PE20	PWMH4	MCCDB		
PE21	PWML5			
PE22	PWMH5	MCDB0		
PE23	PWML6			
PE24	PWMH6	MCDB1		
PE25	PWML7			
PE26	PWMH7	MCDB2		
PE27	NCS7	MCDB3		
PE28	SPI1_MISO			
PE29	SPI1_MOSI			
PE30	SPI1_SPCK			
PE31	SPI1_NPCS0			

11.2.6 PIO Controller F Multiplexing

Table 11-7. Multiplexing on PIO Controller F (PIOF)

I/O Line	Peripheral A	Peripheral B	Extra Function	Comments
PF0	SPI1_NPCS1			
PF1	SPI1_NPCS2			
PF2	SPI1_NPCS3			
PF3	PWMH3			
PF4	CTS3			
PF5	RTS3			

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)

- Supports communication with serial external devices
- Four chip selects with external decoder support allow communication with up to 15 peripherals
- Serial memories, such as DataFlash and 3-wire EEPROMs
- Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
- External co-processors
- Master or slave serial peripheral bus interface
- 8- to 16-bit programmable data length per chip select
- Programmable phase and polarity per chip select
- Programmable transfer delays between consecutive transfers and between clock and data per chip select
- Programmable delay between consecutive transfers
- Selectable mode fault detection
- Very fast transfers supported
- Transfers with baud rates up to MCK
- The chip select line may be left active to speed up transfers on the same device
- Four Character FIFO in Reception
- Connection to DMA Channel Capabilities Optimizes Data Transfers
- One channel for the Receiver, One Channel for the Transmitter

12.2 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- Compatibility with Atmel two-wire interface, serial memory and $\mathrm{I}^{2} \mathrm{C}$ compatible devices
- One, two or three bytes for slave address
- Sequential read/write operations
- Bit Rate: up to 400 kbit/s
- General Call Supported in Slave Mode
- SMBUS Quick Command Supported in Master Mode
- Connection to Peripheral DMA Controller (PDC) for TWIO and TWI1 and DMA Controller (DMAC) for TWIO Channel Capabilities Optimizes Data Transfers in Master Mode Only

12.3 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
- Independent receiver and transmitter with a common programmable Baud Rate Generator
- Even, Odd, Mark or Space Parity Generation
- Parity, Framing and Overrun Error Detection
- Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Support for two PDC channels with connection to receiver and transmitter
- Connection to Peripheral DMA Controller or DMA Controller (TWIO) Channel Capabilities Optimizes Data Transfers

12.4 USART

- Programmable Baud Rate Generator

- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
- 1, 1.5 or 2 stop bits in Asynchronous Mode, or 1 or 2 stop bits in Synchronous Mode
- Parity generation and error detection
- Framing error detection, overrun error detection
- MSB- or LSB-first
- Optional break generation and detection
- By 8 or by-16 over-sampling receiver frequency
- Hardware handshaking RTS-CTS
- Receiver time-out and transmitter timeguard
- Optional Multi-drop Mode with address generation and detection
- Optional Manchester Encoding
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
- NACK handling, error counter with repetition and iteration limit
- SPI Mode
- Master or Slave
- Serial Clock programmable Phase and Polarity
- SPI Serial Clock (SCK) Frequency up to MCK/6
- IrDA modulation and demodulation
- Communication at up to 115.2 Kbps
- LIN Mode (USARTO only)
- Compliant with LIN 1.3 and LIN 2.0 specifications
- Master or Slave
- Processing of frames with up to 256 data bytes
- Response Data length can be configurable or defined automatically by the Identifier
- Self synchronization in Slave node configuration
- Automatic processing and verification of the "Synch Break" and the "Synch Field"
- The "Synch Break" is detected even if it is partially superimposed with a data byte
- Automatic Identifier parity calculation/sending and verification
- Parity sending and verification can be disabled
- Automatic Checksum calculation/sending and verification
- Checksum sending and verification can be disabled
- Support both "Classic" and "Enhanced" checksum types
- Full LIN error checking and reporting
- Frame Slot Mode: the Master allocates slots to the scheduled frames automatically
- Generation of the Wakeup signal
- Test Modes
- Remote Loopback, Local Loopback, Automatic Echo
- Interfaced with Peripheral DMA (PDC) Channels to Reduce Processor Overhead (All USARTs) and with the DMA Controller (DMAC) (USART0 and 1)

12.5 Serial Synchronous Controller (SSC)

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I^{2} S, TDM Buses, Magnetic Card Reader,...)
- Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal
- Interfaced with the DMA Controller (DMAC) to Reduce Processor Overhead

12.6 Timer Counter (TC)

- Three 32-bit Timer Counter Channels
- Wide range of functions including:
- Frequency Measurement
- Event Counting
- Interval Measurement
- Pulse Generation
- Delay Timing
- Pulse Width Modulation
- Up/down Capabilities
- Each channel is user-configurable and can contain:
- Three external clock inputs
- Five internal clock inputs
- Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels
- Quadrature decoder
- Advanced line filtering
- Position / revolution / speed
- 2-bit Gray Up/Down Counter for Stepper Motor
12.7 Pulse Width Modulation Controller (PWM)
- One Eight-channel (SAM3A and 144-pin SAM3X) or One Four-channel (100-pin SAM3X) 16bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
- A Modulo n counter providing eleven clocks
- Two independent Linear Dividers working on modulo n counter outputs
- High Frequency Asynchronous clocking mode
- Independent channel programming
- Independent Enable Disable Commands
- Independent Clock Selection
- Independent Period and Duty Cycle, with Double Bufferization
- Programmable selection of the output waveform polarity
- Programmable center or left aligned output waveform
- Independent Output Override for each channel
- Independent complementary Outputs with 12-bit dead time generator for each channel
- Independent Enable Disable Commands
- Independent Clock Selection
- Independent Period and Duty Cycle, with Double Bufferization
- Synchronous Channel mode
- Synchronous Channels share the same counter
- Mode to update the synchronous channels registers after a programmable number of periods
- Interfaced with Peripheral DMA (PDC) or with the DMA Controller (DMAC) Channels to Reduce Processor Overhead
- Two independent event lines which can send up to 4 triggers on ADC within a period
- Three programmable external (PWMFIx pins) and three internal (from ADC, PMC controller and Timer 0) Fault Inputs providing an asynchronous protection of outputs without MCU intervention
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V2.0
- Compatibility with CE-ATA Specification 1.1
- Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- Supports 2 Multiplexed Slot(s)
- Each Slot for either a High Speed MultiMediaCard Bus (Up to 30 Cards) or an SD Memory Card
- Support for Stream, Block and Multi-block Data Read and Write
- Supports Connection to DMA Controller (DMAC)
- Minimizes Processor Intervention for Large Buffer Transfers
- Built in FIFO (from 16 to 256 bytes) with Large Memory Aperture Supporting Incremental Access
- Support for CE-ATA Completion Signal Disable Command
- Protection Against Unexpected Modification On-the-Fly of the Configuration Registers

12.9 USB On-The-Go High Speed Port (UOTGHS)

- USB2.0 Compliant, Low/Full/High-Speed (LS/FS/HS) and On-The-Go, 1.5Mb/s, 12Mb/s, 480Mb/s
- 10 Pipes/Endpoints
- 4K bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
- Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
- Flexible Pipe/Endpoint Configuration and Management with 6 Dedicated DMA Channels
- On-Chip UTMI transceiver including Pull-ups/Pull-downs
- On-Chip OTG pad including VBUS analog comparator

12.10 Analog-to-Digital Converter (ADC)

- 12-bit Resolution
- 1 MHz Conversion Rate
- 2.4 V to 3.6 V Wide Range Power Supply Operation
- Selectable Single Ended or Differential Input Voltage
- Programmable Gain and Offset per channel For Maximum Full Scale Input Range 0 - VDD
- Integrated Multiplexer Offering Up to 16 Independent Analog Inputs
- Individual Enable and Disable of Each Channel
- Hardware or Software Trigger
- External Trigger Pin
- Timer Counter Outputs (Corresponding TIOA Trigger)
- Internal Trigger Counter
- PWM Event Line
- Drive of PWM Fault Input
- PDC Support
- Possibility of ADC Timings Configuration
- Two Sleep Modes and Conversion Sequencer
- Automatic Wakeup on Trigger and Back to Sleep Mode after Conversions of all Enabled Channels
- Possibility of Customized Channel Sequence
- Standby Mode for Fast Wakeup Time Response
- Power Down Capability
- Automatic Window Comparison of Converted Values
- Write Protect Registers

12.11 Digital-to-Analog Converter (DAC)

- 2 channels, 12 -bit DAC
- Up to 1 mega-sample conversion rate in single channel mode
- Flexible conversion range
- Multiple trigger sources for each channel
- Built-in offset and gain calibration
- Possibility to drive output to ground
- Possibility to use as input to analog comparator or ADC (as an internal wire and without S/H stage)
- Two PDCA channels
- Power reduction mode

12.12 CAN Controller (CAN)

- Fully Compliant with CAN 2.0 Part A and 2.0 Part B
- Bit Rates up to $1 \mathrm{Mbit} / \mathrm{s}$
- 8 Object Oriented Mailboxes with the Following Properties:
- CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message
- Object Configurable in Receive (with Overwrite or Not) or Transmit Modes
- Independent 29-bit Identifier and Mask Defined for Each Mailbox
- 32-bit Access to Data Registers for Each Mailbox Data Object
- Uses a CAN_SIZE_COUNTER-bit Timestamp on Receive and Transmit Messages
- Hardware Concatenation of ID Masked Bitfields To Speed Up Family ID Processing
- 16-bit Internal Timer for Timestamping and Network Synchronization
- Programmable Reception Buffer Length up to 8 Mailbox Objects
- Priority Management between Transmission Mailboxes
- Autobaud and Listening Mode
- Low Power Mode and Programmable Wake-up on Bus Activity or by the Application
- Data, Remote, Error and Overload Frame Handling

12.13 Ethernet MAC (EMAC)

- DMA Master on Receive and Transmit Channels
- Compatible with IEEE Standard 802.3
- 10 and $100 \mathrm{Mbit} / \mathrm{s}$ operation
- Full- and half-duplex operation
- Statistics Counter Registers
- MII (144-pin SAM3X)/RMII (all SAM3X) interface to the physical layer
- Interrupt generation to signal receive and transmit completion
- 128-byte transmit FIFO and 128-byte receive FIFO
- Automatic pad and CRC generation on transmitted frames
- Automatic discard of frames received with errors
- Address checking logic supports up to four specific 48-bit addresses
- Support Promiscuous Mode where all valid received frames are copied to memory
- Hash matching of unicast and multicast destination addresses
- Physical layer management through MDIO interface
- Half-duplex flow control by forcing collisions on incoming frames
- Full-duplex flow control with recognition of incoming pause frames
- Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged
- Frames
- Multiple buffers per receive and transmit frame
- Jumbo frames up to 10,240 bytes supported

12.14 True Random Number Generator (TRNG)

- Passed NIST Special Publication 800-22 Tests Suite
- Passed Diehard Random Tests Suite
- Provides a 32-bit Random Number Every 84 Clock Cycles

12.15 External Bus Interface (EBI)

- Only present on 144-pin version of SAM3X
- Managing SMC, Nand Flash accesses offering:
- Up to 8 Configurable chip select
- Programmable timing on a per chip select basis
- 16-Mbyte Address Space per Chip Select
- 8- or 16-bit Data Bus
- Word, Halfword, Byte Transfers
- Byte Write or Byte Select Lines
- Programmable Setup, Pulse and Hold Time for Read Signals per Chip Select
- Programmable Setup, Pulse and Hold Time for Write Signals per Chip Select
- Programmable Data Float Time per Chip Select
- External Wait Request
- Automatic Switch to Slow Clock Mode
- Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
- NAND Flash Controller supporting NAND Flash with Multiplexed Data/Address buses
- Supports SLC NAND Flash technology
- Supports Hardware Error Correcting Code (ECC), 1-bit error correction, 2-bit error detection
- Detection and Correction by Software

13. Package Drawings

The SAM3X/A series devices are available in QFP (LQFP or PQFP) and LFBGA packages.
Figure 13-1. 100-lead LQFP Package Drawing

Note : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.

Figure 13-2. 100-ball LFBGA Package Drawing

Figure 13-3. 144-lead LQFP Package Drawing

Top View

Bottom View

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A1	0.05		0.15	6
A2	1.35	1.40	1.45	
D	22.00 BSC			
D1	20.00 BSC			2,3
E	22.00 BSC			
E1	20.00 BSC			2,3
E	0.50 BSC			
b	0.17	0.22		0.27
L1	1.00 REF			4,5

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-026 for additional information.
2. The top package body size may be smaller than the bottom package size by as much as 0.15 mm .
3. Dimensions D1 and E1 do not include mold protrusions. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm . Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 and 0.5 mm pitch packages.
5. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
6. A1 is defined as the distance from the seating place to the lowest point on the package body.

Figure 13-4. 144-ball LFBGA Package Drawing

All dimensions are in mm

13.1 Marking

All devices are marked with the Atmel logo and the ordering code.
Additional marking may be in one of the following formats:

where

- "YY": manufactory year
- "WW": manufactory week
- "V": revision
"XXXXXXXXX": lot number

14. Ordering Information

Table 14-1. SAM3X/A Ordering Information

Ordering Code	MRL	Flash (Kbytes)	Package	Package Type	Temperature Operating Range
ATSAM3A4CA-AU	A	256	LQFP100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3A8CA-AU	A	512	LQFP100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3A4CA-CU	A	256	LFBGA100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3A8CA-CU	A	512	LFBGA100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3X4CA-AU	A	256	LQFP100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3X8CA-AU	A	512	LQFP100	Green	Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ATSAM3X4CA-CU	A	256	LFBGA100	Green	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Revision History

In the tables that follow, the most recent version of the document appears first.
"rfo" indicates changes requested during the review and approval loop.

Doc. Rev 11057BS	Comments	Change Request Ref.
	SDRAM Controller info removed: Section "Features"; Table 1-1, "Configuration Summary"; Table 3-1, "Signal Description List"; Section 9.2.1 "External Memory Bus"; Section 10. "System Controller"; Table 11.1, "Peripheral Identifiers"; Section 12.15 "External Bus Interface (EBI)", and Figure 8-1 "SAM3X/A Product Mapping". I/O info modified in Section "Features". Section 1. "SAM3X/A Description" updated. Figure 2-3 "SAM3X4/8E (144 pins) Block Diagram" updated. Table 11-5, "Multiplexing on PIO Controller D (PIOD)" updated. "Write protected Registers" added to Section "Features".	8316

Doc. Rev 11057AS	Comments	Change Request Ref.
	First issue	

Headquarters
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600

International

Atmel Asia Limited
Unit 01-5 \& 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site	Technical Support	Sales Contacts
www.atmel.com	AT91SAM Support	www.atmel.com/contacts/
www.atmel.com/AT91SAM	Atmel technical support	
Literature Requests		
www.atmel.com/literature		

[^0]© 2012 Atmel Corporation. All rights reserved. Atmel ${ }^{\oplus}$, Atmel logo and combinations thereof, SAM-BA ${ }^{\circledR}$ and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM ${ }^{\circledR}$, ARM ${ }^{\oplus}$ Powered logo, Cortex ${ }^{\circledR}$, Thumb ${ }^{\circledR}-2$ and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

[^0]:

 for use as components in applications intended to support or sustain life.

