feATURES

- 90 MHz Gain Bandwidth, $f=100 \mathrm{kHz}$
- Maximum Input Offset Voltage: $125 \mu \mathrm{~V}$
- Settling Time: 900 ns ($\mathrm{A}_{V}=-1,150 \mu \mathrm{~V}, 10 \mathrm{~V}$ Step)
- 22V/us Slew Rate
- Low Distortion: -96.5dB for $100 \mathrm{kHz}, 10 \mathrm{~V}$ P-p
- Maximum Input Offset Voltage Drift: $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Maximum Inverting Input Bias Current: 10nA
- Minimum DC Gain: $300 \mathrm{~V} / \mathrm{mV}$
- Minimum Output Swing into $2 \mathrm{k}: \pm 12.8 \mathrm{~V}$
- Unity-Gain Stable
- Input Noise Voltage: $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Input Noise Current: 0.6pA/ $/ \mathrm{Hz}$
- Total Input Noise Optimized for $1 \mathrm{k} \Omega<\mathrm{R}_{\mathrm{S}}<20 \mathrm{k} \Omega$
- Specified at $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Supplies

APPLICATIONS

- Precision Instrumentation
- High Accuracy Data Acquisition Systems
- 16-Bit DAC Current-to-Voltage Converter
- ADC Buffer
- Low Distortion Active Filters
- Photodiode Amplifiers

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1469$ is a dual, precision high speed operational amplifier with 16 -bit accuracy and 900 ns settling to $150 \mu \mathrm{~V}$ for 10 V steps. This unique blend of precision and AC performance makes the LT1469 the optimum choice for high accuracy applications such as DAC current-to-voltage conversion and ADC buffers. The initial accuracy and drift characteristics of the input offset voltage and inverting input bias current are tailored for inverting applications.

The 90MHz gain bandwidth ensures high open-loop gain atfrequency for reducing distortion. In noninverting applications such as an ADC buffer, the low distortion and DC accuracy allow full 16-bit AC and DC performance.

The 22V/ $\mu \mathrm{s}$ slew rate of the LT1469 improves large signal performance compared to other precision op amps in applications such as active filters and instrumentation amplifiers.

The LT1469 is manufactured on Linear Technology's complementary bipolar process and is available in 8 -pin PDIP and S0 packages. A single version, the LT1468, is also available.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

16-Bit DAC I-to-V Converter and Reference Inverter for Bipolar Output Swing ($\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$ to 10 V)

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 36V Input Current (Note 2) \qquad .$\pm 10 \mathrm{~mA}$ Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range (Note 5) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature . \qquad $150^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOPVIEW	ORDER PART NUMBER
-InA $2 \sim A \square 7$ OUtb	LT1469CS8
+INA 3	LT1469IS8
4 5 +N	LT1469CN8
N PACKAGE 88 PACKAGE 8-LEAD	LT1469IN8
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{N}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=190^{\circ} \mathrm{C} / \mathrm{N}(88) \end{aligned}$	S8 PART MARKING
	1469
	14691

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 125 \\ & 200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
10 S	Input Offset Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		13	± 50	nA
I_{B} -	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	± 10	nA
$\underline{I_{B}+}$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		-10	± 40	nA
	Input Noise Voltage	0.1 Hz to 10 Hz	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.3		$\mu \mathrm{VP}_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$f=10 \mathrm{kHz}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode, $\mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V}$ Differential	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 240 \\ & 150 \end{aligned}$		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{ClN}^{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		4		pF
$V_{C M}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 12.5 \\ 2.5 \end{gathered}$	$\begin{gathered} 13.5 \\ 3.6 \end{gathered}$		V
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline-14.3 \\ -4.4 \end{gathered}$	$\begin{gathered} \hline-12.5 \\ -2.5 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 96 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 112 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Minimum Supply Voltage	Guaranteed by PSRR			± 2.5	± 4.5	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		100	112		dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 8000 \\ & 8000 \end{aligned}$		V / mV V / mV V / mV V / mV
V OUT	Maximum Output Swing	$\begin{aligned} & R_{L}=10 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=10 \mathrm{k}, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 3.0 \\ \pm 2.8 \end{gathered}$	$\begin{gathered} \pm 13.6 \\ \pm 13.5 \\ \pm 3.7 \\ \pm 3.6 \end{gathered}$		V
IOUT	Maximum Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive $\mathrm{V}_{\text {OUt }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 22 \\ & \pm 22 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	± 25	± 40		mA

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{cm}}=0 \mathrm{O}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
SR	Slew Rate	$A_{V}=-10, R_{L}=2 k($ Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \end{aligned}$		V/ $/ \mathrm{S}$ $\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth	10V Peak, (Note 7) 3V Peak, (Note 7)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 350 \\ & 900 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$
GBW	Gain Bandwidth Product	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 90 \\ & 88 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$ Step	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 11 \\ & 12 \\ & \hline \end{aligned}$		ns
OS	Overshoot	$A_{V}=1,0.1 \mathrm{~V}$ Step	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 30 \\ & 35 \end{aligned}$		\%
$t_{\text {PD }}$	Propagation Delay	$A_{V}=1,50 \% V_{\text {IN }}$ to $50 \% V_{\text {OUT }}, 0.1 \mathrm{~V}$ Step	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline 9 \\ 10 \end{gathered}$		ns
$\mathrm{t}_{\text {S }}$	Settling Time	10 V Step, $0.01 \%, A_{V}=-1$ 10 V Step, $150 \mu \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1$ 5 V Step, $0.01 \%, A_{V}=-1$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 760 \\ & 900 \\ & 770 \\ & \hline \end{aligned}$		ns ns ns
THD	Total Harmonic Distortion	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=10 V_{\text {P-P }}, f=100 \mathrm{kHz} \\ & A_{V}=1, V_{\text {OUT }}=20 V_{P-P}, f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -96.5 \\ & -125 \\ & \hline \end{aligned}$		dB dB
Rout	Output Resistance	$A_{V}=1, f=100 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		0.02		Ω
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \\ & \hline \end{aligned}$		dB dB
Is	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 4.1 \\ & 3.8 \end{aligned}$	$\begin{gathered} 5.2 \\ 5 \end{gathered}$	mA
$\Delta V_{\text {OS }}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 225 \\ & 350 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\left.\Delta\right\|_{B^{-}}$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		2	18	nA
$\Delta \mathrm{l}^{+}$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5	78	nA
$\triangle \mathrm{CMRR}$	Common Mode Rejection Match	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note 9) } \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 93 \\ & 93 \end{aligned}$	$\begin{aligned} & 113 \\ & 115 \end{aligned}$		dB dB
\triangle PSRR	Power Supply Rejection Match	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 9)		97	115		dB

The - denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$\mathrm{V}_{\text {SUPPLY }}$		MIN	TYP	MAX	UNITS
$V_{0 S}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet			$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
$\overline{\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}}$	Input Offset Voltage Drift	(Note 8)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 80	nA
$\Delta \mathrm{l}_{0 S} / \Delta \mathrm{T}$	Input Offset Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		60		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
IB^{-}	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 20	nA
$\underline{\Delta I_{B}-/ \Delta T}$	Inverting Input Bias Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		40		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}}+$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 60	nA
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 12.5 \\ 2.5 \\ \hline \end{gathered}$			V V
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet			$\begin{gathered} -12.5 \\ -2.5 \end{gathered}$	V

ELETRICAL CHARACTERISTICS The o denotes the specifications which apply over the temperature range
 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$		MIN	TYP MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12.5 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 94 \\ & 94 \end{aligned}$		dB dB
	Minimum Supply Voltage	Guaranteed by PSRR		\bullet		± 4.5	V
PSRR	Power Supply Rejection Ratio	$V_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	95		dB
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		V / mV V / mV V / mV V / mV
V $\overline{\text { OUT }}$	Maximum Output Swing	$\begin{aligned} & R_{L}=10 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=10 \mathrm{k}, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} \pm 12.9 \\ \pm 12.7 \\ \pm 2.9 \\ \pm 2.7 \end{gathered}$		V V V V
IOUT	Maximum Output Current	$V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{r} \pm 12.5 \\ \pm 12.5 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {SC }}$	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	\bullet	± 17		mA
SR	Slew Rate	$A_{V}=-10, R_{L}=2 k($ Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 13 \\ 9 \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & \hline 55 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 98 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
I_{S}	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 6.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\Delta \mathrm{V}_{0 S}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\Delta \Delta_{B}$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		38	nA
$\Delta \mathrm{l}_{\mathrm{B}^{+}}$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		118	nA
$\Delta \mathrm{CMRR}$	Common Mode Rejection Match	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note 9) } \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 91 \\ & 91 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
\triangle PSRR	Power Supply Rejection Match	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 9)		\bullet	92		dB

The denotes the specifications which apply over the temperature range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.
(Note 5)

SYMBOL	PARAMETER	CONDITIONS	$\mathrm{V}_{\text {SUPPLY }}$		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet			$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\overline{\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}}$	Input Offset Voltage Drift	(Note 8)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Ios	Input Offset Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 120	nA
$\Delta \mathrm{l}_{0 S} / \Delta \mathrm{T}$	Input Offset Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		120		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I^{-}	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 40	nA
$\Delta \mathrm{I}_{\mathrm{B}}-/ \Delta \mathrm{T}$	Inverting Input Bias Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		80		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\underline{\mathrm{I}^{+}}$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			± 80	nA

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the temperature range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$		MIN	TYP MAX	UNITS	
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} 12.5 \\ 2.5 \end{gathered}$		V	
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{gathered} -12.5 \\ -2.5 \end{gathered}$	V	
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12.5 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	\bullet	$\begin{aligned} & 92 \\ & 92 \end{aligned}$		dB dB	
	Minimum Supply Voltage	Guaranteed by PSRR		\bullet		± 4.5	V	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	93		dB	
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12,5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet -	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \end{aligned}$		V / mV V / mV V / mV V / mV	
VOUT	Maximum Output Swing	$R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $R_{L}=2 k, 1 \mathrm{mV}$ Overdrive $R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $R_{L}=2 k, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet -	$\begin{gathered} \pm 12.8 \\ \pm 12.6 \\ \pm 2.8 \\ \pm 2.6 \end{gathered}$		V V V V	
IOUT	Maximum Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	\bullet	$\begin{aligned} & \pm 7 \\ & \pm 7 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
${ }_{\text {ISC }}$	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	\bullet	± 12		mA	
SR	Slew Rate	$A_{V}=-10, R_{L}=2 k($ Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 9 \\ & 6 \end{aligned}$		$\mathrm{V} / \mathrm{\mu s}$ V/ $\mu \mathrm{s}$	
GBW	Gain Bandwidth Product	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	\bullet	$\begin{aligned} & 45 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
	Channel Separation	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	\bullet	$\begin{aligned} & 96 \\ & 96 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
I_{S}	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	\bullet		$\begin{gathered} \hline 7 \\ 6.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
$\Delta \mathrm{I}_{\mathrm{B}}-$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		78	nA	
$\Delta \\|_{\text {B }}$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		158	nA	
Δ CMRR	Common Mode Rejection Match	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note 9) } \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 89 \\ & 89 \end{aligned}$		dB dB	
\triangle PSRR	Power Supply Rejection Match	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 9)		\bullet	90		dB	

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The inputs are protected by back-to-back diodes and two 100Ω series resistors. If the differential input voltage exceeds 0.7 V , the input current should be limited to less than 10 mA . Input voltages outside the supplies will be clamped by ESD protection devices and input currents should also be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: The LT1469C and LT1469I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 5: The LT1469C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified
performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT1469I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Slew rate is measured between $\pm 8 \mathrm{~V}$ on the output with $\pm 12 \mathrm{~V}$ swing for $\pm 15 \mathrm{~V}$ supplies and $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ swing for $\pm 5 \mathrm{~V}$ supplies.
Note 7: Full-power bandwidth is calculated from the slew rate.
FPBW $=S R / 2 \pi V_{p}$.
Note 8: This parameter is not 100% tested.
Note 9: Δ CMRR and \triangle PSRR are defined as follows: 1) CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on each amplifier; 2) the difference between the two sides is calculated in $\mu \mathrm{V} / \mathrm{N} ; 3$) the result is converted to dB .

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

1469 G16

Gain vs Frequency, $A_{V}=1$

1469 G22
Gain vs Frequency, $A_{V=-1}$

Gain Bandwidth and Phase
Margin vs Supply Voltage

1469 G17

Gain vs Frequency, $A_{V}=-1$

1469 G23
Slew Rate vs Supply Voltage

Gain Bandwidth and Phase Margin vs Temperature

Gain vs Frequency, $A_{V}=1$

1469 G24
Slew Rate vs Temperature

TYPICAL PERFORMANCG CHARACTERISTICS

TYPICAL PGRFORMAOCE CHARACTERISTICS

Large-Signal Transient, $A_{V}=1$

Small-Signal Transient, $A_{V}=-1$

Large-Signal Transient, $A_{V}=-1$

APPLICATIONS INFORMATION

Layout and Passive Components

The LT1469 requires attention to detail in board layout in order to maximize DC and AC performance. For best AC results (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F})$ in parallel with Iow ESR bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum). For best DC performance, use "star" grounding techniques, equalize input trace lengths and minimize leakage (e.g., $1.5 \mathrm{G} \Omega$ of leakage between an input and a 15 V supply will generate 10 nA -equal to the maximum $I_{B}-$ specification).

Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: for inverting configurations tie the ring to ground, in noninverting connections tie the ring to the inverting input (note the input capacitance will increase which may require a compensating capacitor as discussed below).

Microvolt level error voltages can also be generated in the external circuitry. Thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the inputs can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short and the two input leads should be as close together as possible and maintained at the same temperature.

APPLICATIONS InfORMATION

The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole which can cause peaking or even oscillations. For feedback resistors greater than $2 k$, a feedback capacitor of value $C_{F}>R_{G} \bullet C_{\mid N} / R_{F}$ should be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is one, and a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}. An example would be a DAC I-to-V converter as shown on the front page of the data sheet where the DAC can have many tens of picofarads of output capacitance. Another example would be a gain of -1 with 5 k resistors; a 5 pF to 10 pF capacitor should be added across the feedback resistor.

Input Considerations

Each input of the LT1469 is protected with a 100Ω series resistor and back-to-back diodes across the bases of the input devices. If large differential input voltages are anticipated, limit the input current to less than 10 mA with an external series resistor. Each input also has two ESD clamp diodes-one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10 mA .

Figure 1. Nulling Input Capacitance

The LT1469 employs bias current cancellation at the inputs. The inverting input current is trimmed at zero common mode voltage to minimize errors in inverting applications such as I-to-V converters. The noninverting input current is not trimmed and has a wider variation and therefore a larger maximum value. As the input offset current can be greater than either input current, the use of balanced source resistance is NOT recommended as it actually degrades DC accuracy and also increases noise.
The input bias currents vary with common mode voltage. The cancellation circuitry was not designed to track this common mode voltage because the settling time would have been adversely affected.
The LT1469 inputs can be driven to the negative supply and to within 0.5 V of the positive supply without phase reversal. As the input moves closer than 0.5 V to the positive supply, the output reverses phase.

Total Input Noise

The total input noise of the LT1469 is optimized for a source resistance between 1k and 20k. Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 1 k , voltage noise of the amplifier dominates. When the source resistance is above 20k, the input noise current is the dominant contributor.

Figure 2. Input Stage Protection

APPLICATIONS INFORMATION

Capacitive Loading

The LT1469 drives capacitive loads of up to 100pF in unitygain and 300 pF in a gain of -1 . When there is a need to drive a larger capacitive load, a small series resistor should be inserted between the output and the load. In addition, a capacitor should be added between the output and the inverting input as shown in Figure 3.

Settling Time

The LT1469 is a single stage amplifier with an optimal thermal layout that leads to outstanding settling performance. Measuring settling even at the 12-bit level is very challenging, and at the 16-bit level requires a great deal of subtlety and expertise. Fortunately, there are two excellent Linear Technology reference sources for settling mea-surements-Application Notes 47 and 74. Appendix B of AN47 is a vital primer on 12-bit settling measurements and AN74 extends the state-of-the-art while concentrating on settling time with a 16-bit current output DAC input.

The settling of the DAC I-to-V converter on the front page was measured using the exact methods of AN74. The optimum nulling of the DAC output capacitance requires 15 pF across the 12k feedback resistor. The theoretical limit for 16 -bit settling is 11.1 times this RC time constant or $2 \mu \mathrm{~s}$. The actual settling time is $2.4 \mu \mathrm{~s}$ at the output of the LT1469.

The RC output noise filter adds a slight settling time delay but reduces the noise bandwidth to 1.6 MHz which increases the output resolution for 16-bit accuracy.

Figure 3. Driving Capacitive Loads

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

Extending 16-Bit DAC Performance to 200V Output Swing

SImPLIFIED SCHEMATIC

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

TYPICAL APPLICATION

16-Bit Accurate Single Ended to Differential ADC Buffer

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1167	Precision Instrumentation Amplifier	Single Resistor Gain Set, 0.04\% Max Gain Error, 10ppm Max Gain Nonlinearity
LT1468	Single 90MHz, 22V/ $\mu \mathrm{s}, 16$-Bit Accurate Op Amp	$75 \mu \mathrm{~V}$ Max V ${ }_{\text {Os, S Single Version of LT1469 }}$
LTC1595/LTC1596	16-Bit Serial Multiplying Iout DAC	± 1 LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade
LTC1597	16-Bit Parallel Multiplying Iout DAC	± 1 SB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors
LTC1604	16-Bit, 333ksps Sampling ADC	$\pm 2.5 \mathrm{~V}$ Input, SINAD = 90dB, THD $=-100 \mathrm{~dB}$
LTC1605	Single 5V, 16-Bit, 100ksps Sampling ADC	Low Power, $\pm 10 \mathrm{~V}$ Inputs, Parallel/Byte Interface

