

iCoupler® Digital Isolator

ADuM1100

FEATURES

High data rate: dc to 100 Mbps (NRZ)
Compatible with 3.3 V and 5.0 V operation/level translation
125°C maximum operating temperature
Low power operation

5 V operation

1.0 mA maximum @ 1 Mbps

4.5 mA maximum @ 25 Mbps

16.8 mA maximum @ 100 Mbps

3.3 V operation

0.4 mA maximum @ 1 Mbps

3.5 mA maximum @ 25 Mbps

7.1 mA maximum @ 50 Mbps

8-lead SOIC_N package (lead-free version available) High common-mode transient immunity: >25 kV/ μ s Safety and regulatory information

UL recognized

2500 V rms for 1 minute per UL 1577

CSA Component Acceptance Notice #5A

VDE Certificate of Conformity

DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01

DIN EN 60950 (VDE 0805): 2001–12; EN 60950: 2000

VIORM = 560 VPEAK

APPLICATIONS

Digital fieldbus isolation
Opto-isolator replacement
Computer-peripheral interface
Microprocessor system interface
General instrumentation and data acquisition applications

GENERAL DESCRIPTION

The ADuM1100¹ is a digital isolator based on Analog Devices' *i*Coupler technology. Combining high speed CMOS and monolithic air core transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives, such as optocoupler devices.

Configured as a pin-compatible replacement for existing high speed optocouplers, the ADuM1100 supports data rates as high as 25 Mbps and 100 Mbps.

The ADuM1100 operates with either voltage supply ranging from 3.0 V to 5.5 V, boasts a propagation delay of <18 ns and edge asymmetry of <2 ns, and is compatible with temperatures up to 125°C. It operates at very low power, less than 0.9 mA of quiescent current (sum of both sides), and a dynamic current of less than 160 μA per Mbps of data rate. Unlike other optocoupler alternatives, the ADuM1100 provides dc correctness with a patented refresh feature that continuously updates the output signal.

The ADuM1100 is offered in three grades. The ADuM1100AR and ADuM1100BR can operate up to a maximum temperature of 105°C and support data rates up to 25 Mbps and 100 Mbps, respectively. The ADuM1100UR can operate up to a maximum temperature of 125°C and supports data rates up to 100 Mbps.

FUNCTIONAL BLOCK DIAGRAM

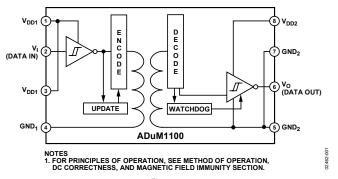


Figure 1.

¹ Protected by U.S. Patents 5,952,849; 6,525,566; 6,922,080; 6,903,578; 6,873,065; and other pending patents.

TABLE OF CONTENTS

Features	Recommended Operating Conditions	11
Applications1	Absolute Maximum Ratings	12
General Description1	ESD Caution	12
Functional Block Diagram1	Pin Configuration and Function Description	13
Revision History2	Typical Performance Characteristics	14
Specifications4	Application Information	16
Electrical Specifications, 5 V Operation	PC Board Layout	16
Electrical Specifications, 3.3 V Operation6	Propagation Delay-Related Parameters	16
Electrical Specifications, Mixed 5 V/3 V Or 3 V/5 V Operation	Method of Operation, DC Correctness, and Magnetic Fie Immunity	
Package Characteristics	Power Consumption	18
Regulatory Information	Outline Dimensions	19
Insulation and Safety-Related Specifications	Ordering Guide	19
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics		
REVISION HISTORY		
3/06—Rev. E to Rev. F	4/03—Rev. B to Rev. C	
Updated FormatUniversal	Changes to Features and Patent Note	
Added Note 1	Changes to Regulatory Information	
Changes to Table 14	Changes to Insulation Characteristics Section	
Changes to Table 2	Changes to Absolute Maximum Ratings	
Changes to Table 38	Changes to Package Branding	8
Add Table 11	Changes to Method of Operation, DC Correctness, and	
Inserted Power Consumption Section18	Magnetic Field Immunity SectionReplaced Figure 9	
10/03—Rev. D to Rev. E	· ·	12
Changes to Product Name, Features, and General Description. 1	1/03—Rev. A to Rev. B	
Changes to Regulatory Information	Added ADuM1100UR Grade	ersal
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation	Changed ADuM1100AR/ADuM1100BR to ADuM1100	
Characteristics	Univ	
Changes to Absolute Maximum Ratings7	Changes to Features and General Description	
Changes to Recommended Operating Conditions7	Changes to Specifications	2
Changes to Ordering Guide8	Added Electrical Specifications, Mixed 5 V/3 V or 3 /5 V	
clos B. C. B. B.	Operation Table	4
6/03—Rev. C to Rev. D	Updated Regulatory Information	6
Changed DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation	Changes to VDE 0884 Insulation Characteristics	6
Characteristics	Changes to Absolute Maximum Ratings	
Updated Ordering Guide 8	Changes to Package Branding	
Updated Outline Dimensions	Updated TPC 3 to TPC 8	
	Deleted iCoupler in Field Bus Networks Section	
	Changes to Figure 8	
	Added Figure 9 and Related Text	
	11000 116010 > und iteluted feat	14

11/02—Rev. 0 to Rev. A

Edits to Features	1
Edits to Regulatory Information	4
Edits to VDE 0884 Insulation Characteristics	5
Added Revision History	12
Updated Outline Dimensions	12

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS, 5 V OPERATION¹

 $4.5~V \le V_{DD1} \le 5.5~V$, $4.5~V \le V_{DD2} \le 5.5~V$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_A = 25$ °C, $V_{DD1} = V_{DD2} = 5~V$.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current	I _{DD1 (Q)}		0.3	0.8	mA	$V_I = 0 \text{ V or } V_{DD1}$
Output Supply Current	I _{DD2 (Q)}		0.01	0.06	mA	$V_I = 0 \text{ V or } V_{DD1}$
Input Supply Current (25 Mbps) (See Figure 5)	I _{DD1 (25)}		2.2	3.5	mA	12.5 MHz logic signal frequency
Output Supply Current ² (25 Mbps) (See Figure 6)	I _{DD2 (25)}		0.5	1.0	mA	12.5 MHz logic signal frequency
Input Supply Current (100 Mbps) (See Figure 5)	I _{DD1 (100)}		9.0	14	mA	50 MHz logic signal frequency, ADuM1100BR/ADuM1100UR only
Output Supply Current ² (100 Mbps) (See Figure 6)	I _{DD2 (100)}		2.0	2.8	mA	50 MHz logic signal frequency, ADuM1100BR/ADuM1100UR only
Input Current	I _I	-10	+0.01	+10	μΑ	$0 \le V_{IN} \le V_{DD1}$
Logic High Output Voltage	V _{OH}	$V_{DD2} - 0.1$	5.0		V	$I_0 = -20 \mu A, V_1 = V_{1H}$
		$V_{\text{DD2}}-0.8$	4.6		V	$I_0 = -4 \text{ mA}, V_1 = V_{1H}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_0 = 20 \mu A, V_1 = V_{1L}$
			0.03	0.1	V	$I_0 = 400 \ \mu A, V_I = V_{IL}$
			0.3	0.8	V	$I_0 = 4 \text{ mA}, V_1 = V_{1L}$
SWITCHING SPECIFICATIONS						
For ADuM1100AR						
Minimum Pulse Width ³	PW			40	ns	$C_L = 15$ pF, CMOS signal levels
Maximum Data Rate⁴		25			Mbps	C _L = 15 pF, CMOS signal levels
For ADuM1100BR/ADuM1100UR						-
Minimum Pulse Width ³	PW		6.7	10	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate⁴		100	150		Mbps	$C_L = 15$ pF, CMOS signal levels
For All Grades						
Propagation Delay Time to Logic Low Output ^{5, 6} (See Figure 7)	t _{PHL}		10.5	18	ns	C _L = 15 pF, CMOS signal levels
Propagation Delay Time to Logic High Output ^{5,6} (See Figure 7)	t _{PLH}		10.5	18	ns	C _L = 15 pF, CMOS signal levels
Pulse-Width Distortion t _{PLH} - t _{PHL} 6	PWD		0.5	2	ns	$C_L = 15$ pF, CMOS signal levels
Change vs. Temperature ⁷			3		ps/°C	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew (Equal Temperature) ^{6, 8}	t _{PSK1}			8	ns	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew (Equal Temperature, Supplies) ^{6, 8}	t _{PSK2}			6	ns	C _L = 15 pF, CMOS signal levels
Output Rise/Fall Time	t _R , t _F		3		ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Common-Mode Transient Immunity at Logic Low/High Output ⁹	CM _L , CM _H	25	35		kV/μs	$V_1 = 0$ or V_{DD1} , $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
Refresh Rate	fr		1.2		Mbps	
Input Dynamic Supply Current 10	I _{DDI (D)}		0.09		mA/Mbps	
Output Dynamic Supply Current ¹⁰	I _{DDO (D)}		0.02		mA/Mbps	

- ¹ All voltages are relative to their respective ground.
- ² Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.
- ³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
- ⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
- ⁵ t_{PHL} is measured from the 50% level of the falling edge of the V_I signal to the 50% level of the falling edge of the V_O signal. t_{PLH} is measured from the 50% level of the rising edge of the V_I signal to the 50% level of the rising edge of the V_O signal.
- ⁶ Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the impact of given input rise/fall times on these parameters.
- ⁷ Pulse-width distortion change vs. temperature is the absolute value of the change in pulse-width distortion for a 1°C change in operating temperature.
- ⁸ t_{PSK1} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature and output load within the recommended operating conditions. t_{PSK2} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- 9 CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8 V_{DD2}$. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 < 0.8 V$. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range over which the common-mode is slewed.
- ¹⁰ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.

ELECTRICAL SPECIFICATIONS, 3.3 V OPERATION¹

 $3.0~V \le V_{DD1} \le 3.6~V$, $3.0~V \le V_{DD2} \le 3.6~V$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_A = 25$ °C, $V_{DD1} = V_{DD2} = 3.3~V$.

Table 2.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS			-			
Input Supply Current	I _{DD1 (Q)}		0.1	0.3	mA	$V_1 = 0 \text{ V or } V_{DD1}$
Output Supply Current	I _{DD2 (Q)}		0.005	0.04	mA	$V_1 = 0 \text{ V or } V_{DD1}$
Input Supply Current (25 Mbps) (See Figure 5)	I _{DD1 (25)}		2.0	2.8	mA	12.5 MHz logic signal frequency
Output Supply Current ² (25 Mbps) (See Figure 6)	I _{DD2 (25)}		0.3	0.7	mA	12.5 MHz logic signal frequency
Input Supply Current (50 Mbps) (See Figure 5)	I _{DD1 (50)}		4.0	6.0	mA	25 MHz logic signal frequency, ADuM1100BR/ADuM1100UR only
Output Supply Current ² (50 Mbps) (See Figure 6)	I _{DD2} (50)		1.2	1.6	mA	25 MHz logic signal frequency, ADuM1100BR/ADuM1100UR only
Input Current	Iı	-10	+0.01	+10	μΑ	$0 \le V_{IN} \le V_{DD1}$
Logic High Output Voltage	V _{OH}	$V_{DD2} - 0.1$	3.3		V	$I_0 = -20 \mu A, V_1 = V_{1H}$
		$V_{DD2} - 0.5$	3.0		V	$I_0 = -2.5 \text{ mA}, V_1 = V_{1H}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_0 = 20 \mu A, V_1 = V_{IH}$
			0.04	0.1	V	$I_{O} = 400 \ \mu A, V_{I} = V_{IH}$
			0.3	0.4	V	$I_0 = 2.5 \text{ mA}, V_1 = V_{1H}$
SWITCHING SPECIFICATIONS						
For ADuM1100AR						
Minimum Pulse Width ³	PW			40	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Maximum Data Rate ⁴		25			Mbps	$C_L = 15 \text{ pF, CMOS signal levels}$
For ADuM1100BR/ADuM1100UR						
Minimum Pulse Width ³	PW		10	20	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Maximum Data Rate ⁴		50	100		Mbps	C _L = 15 pF, CMOS signal levels
For All Grades						
Propagation Delay Time to Logic Low Output ^{5, 6} (See Figure 8)	t _{PHL}		14.5	28	ns	C _L = 15 pF, CMOS signal levels
Propagation Delay Time to Logic High Output ^{5, 6} (See Figure 8)	t _{PLH}		15.0	28	ns	$C_L = 15$ pF, CMOS signal levels
Pulse-Width Distortion tplh - tphl 6	PWD		0.5	3	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Change vs. Temperature ⁷			10		ps/°C	$C_L = 15$ pF, CMOS signal levels
Propagation Delay Skew (Equal Temperature) ^{6, 8}	t _{PSK1}			15	ns	$C_L = 15$ pF, CMOS signal levels
Propagation Delay Skew (Equal Temperature, Supplies) ^{6,8}	t _{PSK2}			12	ns	C _L = 15 pF, CMOS signal levels
Output Rise/Fall Time	t _R , t _F		3		ns	C _L = 15 pF, CMOS signal levels
Common-Mode Transient Immunity at Logic Low/High Output ⁹	CM _L , CM _H	25	35		kV/μs	$V_1 = 0$ or V_{DD1} , $V_{CM} = 1000$ V, transient magnitude = 800 V
Refresh Rate	fr		1.1		Mbps	_
Input Dynamic Supply Current 10	I _{DDI (D)}		0.08		mA/Mbps	
Output Dynamic Supply Curren ¹⁰	I _{DDO (D)}		0.04		mA/Mbps	

- ¹ All voltages are relative to their respective ground.
- ² Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.
- ³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
- ⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
- ⁵ t_{PHL} is measured from the 50% level of the falling edge of the V_I signal to the 50% level of the falling edge of the V_O signal. t_{PLH} is measured from the 50% level of the rising edge of the V_I signal to the 50% level of the rising edge of the V_O signal.
- ⁶ Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the impact of given input rise/fall times on these parameters.
- ⁷ Pulse-width distortion change vs. temperature is the absolute value of the change in pulse-width distortion for a 1°C change in operating temperature.
- ⁸ t_{PSK1} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature and output load within the recommended operating conditions. t_{PSK2} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
- 9 CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8 \text{ V}_{DD2}$. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 < 0.8 \text{ V}$. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range over which the common-mode is slewed.
- ¹⁰ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.

ELECTRICAL SPECIFICATIONS, MIXED 5 V/3 V OR 3 V/5 V OPERATION¹

5 V/3 V operation: $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$, $3.0 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$. 3 V/5 V operation: $3.0 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$, $4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}\text{C}$, $V_{DD1} = 3.3 \text{ V}$, $V_{DD2} = 5 \text{ V}$ or $V_{DD1} = 5 \text{ V}$, $V_{DD2} = 3.3 \text{ V}$.

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, Quiescent	I _{DDI (Q)}					
5 V/3 V Operation			0.3	0.8	mA	
3 V/5 V Operation			0.1	0.3	mA	
Output Supply Current, Quiescent	I _{DDO (Q)}					
5 V/3 V Operation			0.005	0.04	mA	
3 V/5 V Operation			0.01	0.06	mA	
Input Supply Current, 25 Mbps	I _{DDI (25)}					
5 V/3 V Operation			2.2	3.5	mA	12.5 MHz logic signal frequency
3 V/5 V Operation			2.0	2.8	mA	12.5 MHz logic signal frequency
Output Supply Current ² , 25 Mbps	I _{DDO (25)}					
5 V/3 V Operation			0.3	0.7	mA	12.5 MHz Logic Signal Frequency
3 V/5 V Operation			0.5	1.0	mA	12.5 MHz Logic Signal Frequency
Input Supply Current, 50 Mbps	I _{DDI (50)}					
5 V/3 V Operation			4.5	7.0	mA	25 MHz logic signal frequency
3 V/5 V Operation			4.0	6.0	mA	25 MHz logic signal frequency
Output Supply Current ² , 50 Mbps	I _{DDO (50)}					
5 V/3 V Operation			1.2	1.6	mA	25 MHz logic signal frequency
3 V/5 V Operation			1.0	1.5	mA	25 MHz logic signal frequency
Input Currents	I _{IA}	-10	+0.01	+10	μΑ	$0 \le V_{IA}$, V_{IB} , V_{IC} , $V_{ID} \le V_{DD1}$ or V_{DD2}
Logic High Output Voltage	V _{OH}	V _{DD2} – 0.1	3.3		V	$I_0 = -20 \mu A$, $V_1 = V_{1H}$
5 V/3 V Operation		$V_{DD2} - 0.5$	3.0		V	$I_0 = -2.5 \text{ mA}, V_1 = V_{1H}$
Logic Low Output Voltage	V _{OL}		0.0	0.1	V	$I_{O} = 20 \mu A, V_{I} = V_{IL}$
5 V/3 V Operation			0.04	0.1	V	$I_0 = 400 \mu A, V_1 = V_{1L}$
•			0.3	0.4	V	$I_{O} = 2.5 \text{ mA}, V_{I} = V_{IL}$
Logic High Output Voltage	V _{OH}	V _{DD2} – 0.1	5.0		V	$I_0 = -20 \mu A$, $V_1 = V_{1H}$
3 V/5 V Operation		$V_{DD2} - 0.8$	4.6		V	$I_0 = -4 \text{ mA}, V_1 = V_{1H}$
Logic Low Output Voltage	V _{OL}	332	0.0	0.1	V	$I_0 = 20 \mu A, V_1 = V_{1L}$
3 V/5 V Operation	102		0.03	0.1	V	$I_0 = 400 \mu A, V_1 = V_{1L}$
			0.3	0.8	V	$I_0 = 4 \text{ mA}, V_1 = V_{1L}$
SWITCHING SPECIFICATIONS						10 11111 4 11
For ADuM1100AR						
Minimum Pulse Width ³	PW			40	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ⁴	' ' '	25		.0	Mbps	$C_L = 15 \text{ pF, CMOS signal levels}$
For ADuM1100BR/ADuM1100UR						Le la pi, em a signamenti
Minimum Pulse Width ³	PW			20	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Maximum Data Rate ⁴	' ' '	50			Mbps	$C_L = 15 \text{ pF, CMOS signal levels}$
For All Grades						Le la pi, em a signamenti
Propagation Delay Time to Logic Low/ High Output ^{5, 6}	t _{PHL} , t _{PLH}					
5 V/3 V Operation (See Figure 9)			13	21	ns	C _L = 15 pF, CMOS signal levels
3 V/5 V Operation (See Figure 10)			16	26	ns	$C_L = 15$ pF, CMOS signal levels

ameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Pulse-Width Distortion, tplh - tphl 6	PWD					
5 V/3 V Operation			0.5	2	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
3 V/5 V Operation			0.5	3	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Change vs. Temperature ⁷						
5 V/3 V Operation			3		ps/°C	$C_L = 15$ pF, CMOS signal levels
3 V/5 V Operation			10		ps/°C	$C_L = 15$ pF, CMOS signal levels
Propagation Delay Skew (Equal Temperature) ^{6, 8}	t _{PSK1}					
5 V/3 V Operation				12	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
3 V/5 V Operation				15	ns	$C_L = 15 \text{ pF, CMOS signal levels}$
Propagation Delay Skew (Equal Temperature, Supplies) ^{6, 8}	t _{PSK2}					
5 V/3 V Operation				9	ns	$C_L = 15$ pF, CMOS signal levels
3 V/5 V Operation				12	ns	$C_L = 15$ pF, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R , t _f		3		ns	$C_L = 15$ pF, CMOS signal levels
Common-Mode Transient Immunity at Logic Low/High Output ⁹	CM _L , CM _H	25	35		kV/μs	$V_I = 0$ or V_{DD1} , $V_{CM} = 1000$ V, transient magnitude = 800 V
Refresh Rate	fr					
5 V/3 V Operation			1.2		Mbps	
3 V/5 V Operation			1.1		Mbps	
Input Dynamic Supply Current ¹⁰	C _{PD1}					
5 V/3 V Operation			0.09		mA/Mbps	
3 V/5 V Operation			0.08		mA/Mbps	
Output Dynamic Supply Current ¹⁰	C _{PD2}					
5 V/3 V Operation			0.04		mA/Mbps	
3 V/5 V Operation			0.02		mA/Mbps	

¹ All voltages are relative to their respective ground.

² Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.

³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.

⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.

⁵ t_{PHL} is measured from the 50% level of the falling edge of the V_I signal to the 50% level of the falling edge of the V_I signal. t_{PLH} is measured from the 50% level of the rising edge of the V_I signal to the 50% level of the rising edge of the V_I signal to the 50% level of the rising edge of the V_I signal.

⁶ Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the impact of given input rise/fall times on these parameters.

Pulse-width distortion change vs. temperature is the absolute value of the change in pulse-width distortion for a 1°C change in operating temperature.

⁸ tp-Sk1 is the magnitude of the worst-case difference in tp-HL and/or tp-LH that is measured between units at the same operating temperature and output load within the recommended operating conditions. tp-Sk2 is the magnitude of the worst-case difference in tp-HL and/or tp-LH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

 $^{^{9}}$ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range over which the common-mode is slewed.

¹⁰ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Resistance (Input to Output) ¹	R _{I-O}		10 ¹²		Ω	
Capacitance (Input to Output) ¹	CI-O		1		pF	f = 1 MHz
Input Capacitance ²	Cı		4.0		pF	
Input IC Junction-to-Case	Өлсі		46		°C/W	Thermocouple located at center underside of package
Thermal Resistance						
Output IC Junction-to-Case	θιςο		41		°C/W	
Thermal Resistance						
Package Power Dissipation	P _{PD}			240	mW	

¹ Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, and Pin 4 shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 shorted together.

REGULATORY INFORMATION

The ADuM1100 is approved by the following organizations.

Table 5.

UL	CSA	VDE
Recognized under 1577 Component	Approved under CSA Component	Certified according to DIN EN 60747-5-2 (VDE 0884
Recognition Program ¹	Acceptance Notice #5A, C22.2 No. 1-98,	Part 2): 2003–1 ² , DIN EN 60950 (VDE 0805): 2001-12;
	C22.2 No. 14-95, and C22.2 No. 950-95	EN60950: 2000
File E214100	File 205078	File 2471900-4880-0002

¹ In accordance with UL 1577, each ADuM1100 is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (leakage detection current limit, $I_{FO} ≤ 5 \mu A$).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Minimum External Air Gap (Clearance)	L(I01)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(I02)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.016 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table I)

² Input capacitance is measured at Pin 2 (V_I).

² In accordance with DIN EN 60747-5-2, each ADuM1100 is proof tested by applying an insulation test voltage ≥ 1050 V_{PEAK} for 1 second (partial discharge detection limit ≤ 5 pC). A "*" mark branded on the component designates DIN EN 60747-5-2 approval.

DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS

Table 7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110	-		
For Rated Mains Voltage ≤ 150 V rms		I to IV	
For Rated Mains Voltage ≤ 300 V rms		I to III	
For Rated Mains Voltage ≤ 400 V rms		I to II	
Climatic Classification			
ADuM1100AR/ADuM1100BR		40/105/21	
ADuM1100UR		40/125/21	
Pollution Degree (DIN VDE 0110, Table I)		2	
Maximum Working Insulation Voltage	V _{IORM}	560	V_{PEAK}
Input-to-Output Test Voltage, Method b1			
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_M = 1$ sec, Partial Discharge < 5 pC	V_{PR}	1050	V_{PEAK}
Input-to-Output Test Voltage, Method a	V_{PR}	672	V_{PEAK}
After Environmental Tests Subgroup 1			
$V_{IORM} \times 1.6 = V_{PR}$, $t_M = 10$ sec, Partial Discharge < 5 pC	V_{PR}	896	V_{PEAK}
After Input and/or Output Safety Test Subgroup 2/3			
$V_{IORM} \times 1.2 = V_{PR}$, $t_M = 10$ sec, Partial Discharge < 5 pC	V_{PR}	672	V_{PEAK}
Highest Allowable Overvoltage (Transient Overvoltage, t _{INI} = 60 sec)	V_{TR}	4000	V_{PEAK}
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure, See Figure 2)			
Case Temperature	Ts	150	°C
Input Current	Is, INPUT	160	mA
Output Current	I _S , OUTPUT	170	mA
Insulation Resistance at T_s , $V_{10} = 500 \text{ V}$	Rs	>109	Ω

This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. The * marking on the package denotes DIN EN 60747-5-2 approval for 560 V_{PEAK} working voltage.

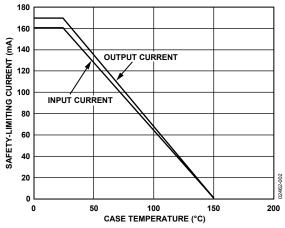


Figure 2. Thermal Derating Curve, Dependence of Safety-Limiting Value with Case Temperature per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature				
ADuM1100AR/ADuM1100BR	T _A	-40	+105	°C
ADuM1100UR	TA	-40	+125	°C
Supply Voltages ¹	V_{DD1} , V_{DD2}	3.0	5.5	V
Logic High Input Voltage, 5 V Operation ^{1, 2} (See Figure 11 and Figure 12)	VIH	2.0	V_{DD1}	V
Logic Low Input Voltage, 5 V Operation ^{1, 2} (See Figure 11 and Figure 12)	V _{IL}	0.0	0.8	V
Logic High Input Voltage, 3.3 V Operation ^{, 2} (See Figure 11 and Figure 12)	V _{IH}	1.5	V_{DD1}	V
Logic Low Input Voltage, 3.3 V Operation ^{1, 2} (See Figure 11 and Figure 12)	V _{IL}	0.0	0.5	V
Input Signal Rise and Fall Times			1.0	ms

¹ All voltages are relative to their respective ground.

² Input switching thresholds have 300 mV of hysteresis. See the Method of Operation, DC Correctness, and Magnetic Field Immunity section, Figure 19, and Figure 20 for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Table 9.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T _{ST}	-55	+150	°C
Ambient Operating Temperature	T _A	-40	+125	°C
Supply Voltages ¹	V_{DD1} , V_{DD2}	-0.5	+6.5	V
Input Voltage ¹	Vı	-0.5	V _{DD1} + 0.5	V
Output Voltage ¹	Vo	-0.5	V _{DD2} + 0.5	V
Average Current, per Pin ²				
Temperature ≤ 105°C		-25	+25	mA
Temperature ≤ 125°C				
Input Current		-7	+7	mA
Output Current		-20	+20	mA
Common-Mode Transients ³		-100	+100	kV/μs

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

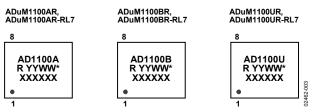
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

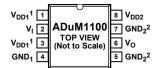
Table 10. Truth Table (Positive Logic)

V _I Input	V _{DD1} State	V _{DD2} State	V _o Output
Н	Powered	Powered	Н
L	Powered	Powered	L
X	Unpowered	Powered	H ¹
X	Powered	Unpowered	X ¹

 $^{^1\,}V_0$ returns to VI state within 1 μs of power restoration.

Figure 3 shows the package branding. * is the DIN EN 60747-5-2 mark, R is the package designator (R denotes SOIC_N), YYWW is the date code, and XXXXXX is the lot code.




Figure 3. Package Branding

¹ All voltages are relative to their respective ground.

² See Figure 2 for information on maximum allowable current for various temperatures.

³ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or permanent damage.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

 $^{^1}$ PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH MAY BE USED FOR VDD1- 2 PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH MAY BE USED FOR GND2.

Figure 4. Pin Configuration

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	V _{DD1}	Input Supply Voltage, 3.0 V to 5.5 V
2	Vı	Logic Input
3	V_{DD1}	Input Supply Voltage, 3.0 V to 5.5 V
4	GND₁	Input Ground Reference
5	GND ₂	Output Ground Reference
6	Vo	Logic Output
7	GND ₂	Output Ground Reference
8	V_{DD2}	Output Supply Voltage, 3.0 V to 5.5 V

TYPICAL PERFORMANCE CHARACTERISTICS

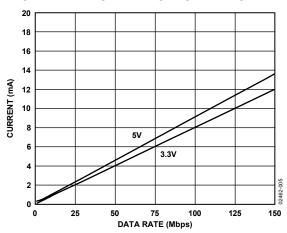


Figure 5. Typical Input Supply Current vs. Logic Signal Frequency for 5 V and 3.3 V Operation

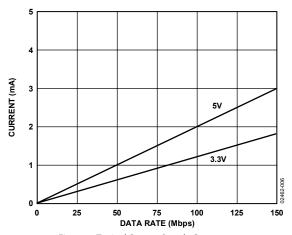


Figure 6. Typical Output Supply Current vs. Logic Signal Frequency for 5 V and 3.3 V Operation

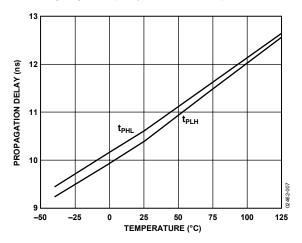


Figure 7. Typical Propagation Delays vs. Temperature, 5 V Operation

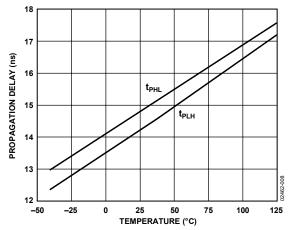


Figure 8. Typical Propagation Delays vs. Temperature, 3.3 V Operation

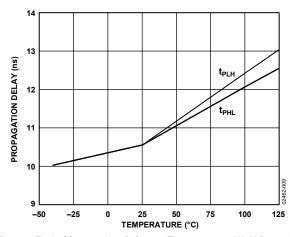


Figure 9. Typical Propagation Delays vs. Temperature, 5 V/3 V Operation

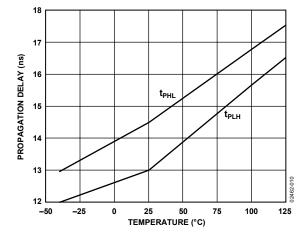


Figure 10. Typical Propagation Delays vs. Temperature, 3 V/5 V Operation

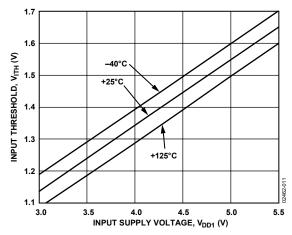


Figure 11. Typical Input Voltage Switching Threshold, Low-to-High Transition

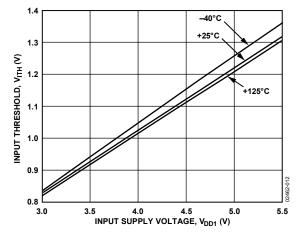


Figure 12. Typical Input Voltage Switching Threshold, High-to-Low Transition

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM1100 digital isolator requires no external interface circuitry for the logic interfaces. A bypass capacitor is recommended at the input and output supply pins. The input bypass capacitor can conveniently be connected between Pin 3 and Pin 4 (see Figure 13). Alternatively, the bypass capacitor can be located between Pin 1 and Pin 4. The output bypass capacitor can be connected between Pin 7 and Pin 8 or Pin 5 and Pin 8. The capacitor value should be between 0.01 μF and 0.1 μF . The total lead length between both ends of the capacitor and the power supply pins should not exceed 20 mm.

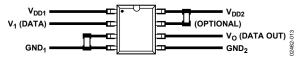


Figure 13. Recommended Printed Circuit Board Layout

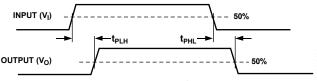


Figure 14. Propagation Delay Parameters

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay time describes the length of time it takes for a logic signal to propagate through a component. Propagation delay time to logic low output and propagation delay time to logic high output refer to the duration between an input signal transition and the respective output signal transition (see Figure 14).

Pulse-width distortion is the maximum difference between t_{PLH} and t_{PHL} and provides an indication of how accurately the input signal's timing is preserved in the component's output signal. Propagation delay skew is the difference between the minimum and maximum propagation delay values among multiple ADuM1100 components operated at the same operating temperature and having the same output load.

Depending on the input signal rise/fall time, the measured propagation delay based on the input 50% level can vary from the true propagation delay of the component (as measured from its input switching threshold). This is because the input threshold, as is the case with commonly used optocouplers, is at a different voltage level than the 50% point of typical input signals. This propagation delay difference is given by

$$\Delta_{LH} = t'_{PLH} - t_{PLH} = (t_r/0.8 \ V_I)(0.5 \ V_1 - V_{ITH (L-H)})$$

$$\Delta_{HL} = t'_{PHL} - t_{PHL} = (t_f/0.8 \ V_I)(0.5 \ V_1 - V_{ITH (H-L)})$$

where:

 t_{PLH} , t_{PHL} is the propagation delays as measured from the input 50% level.

 t'_{PLH} , t'_{PHL} is the propagation delays as measured from the input switching thresholds.

 t_r , t_f is the input 10% to 90% rise/fall time.

 V_I is the amplitude of input signal (0 to V_I levels assumed).

 $V_{ITH (L-H)}$, $V_{ITH (H-L)}$ is the input switching thresholds.

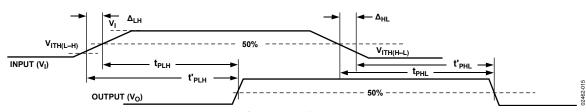


Figure 15. Impact of Input Rise/Fall Time on Propagation Delay

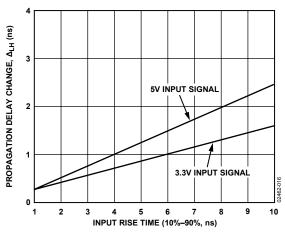


Figure 16. Typical Propagation Delay Change due to Input Rise Time Variation (for $V_{DD1} = 3.3 \text{ V}$ and 5 V)

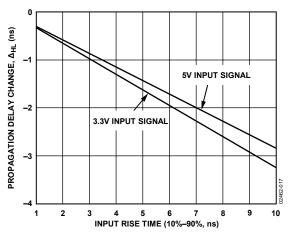


Figure 17. Typical Propagation Delay Change due to Input Fall Time Variation (for $V_{DD1} = 3.3 \text{ V}$ and 5 V)

The impact of the slower input edge rates can also affect the measured pulse-width distortion as based on the input 50% level. This impact can either increase or decrease the apparent pulse-width distortion depending on the relative magnitudes of t_{PHL} , t_{PLH} , and PWD. The case of interest here is the condition that leads to the largest increase in pulse-width distortion. The change in this case is given by

$$\Delta_{\text{PWD}} = PWD' - PWD = \Delta_{LH} - \Delta_{HL} = (t/0.8 \ V_1)(V - V_{ITH \ (L-H)} - V_{ITH \ (H-L)}), (for \ t = t_r = t_f)$$

where:

$$PWD = |t_{PLH} - t_{PHL}|$$

$$PWD' = |t'_{PLH} - t'_{PHL}|$$

This adjustment in pulse-width distortion is plotted as a function of input rise/fall time in Figure 18.

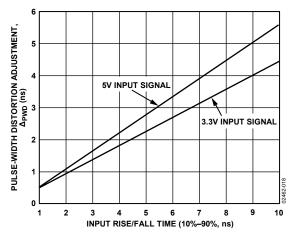


Figure 18. Typical Pulse-Width Distortion Adjustment due to Input Rise/Fall Time Variation (at $V_{DD1} = 3.3 \text{ V}$ and 5 V)

METHOD OF OPERATION, DC CORRECTNESS, AND MAGNETIC FIELD IMMUNITY

The two coils in Figure 1 act as a pulse transformer. Positive and negative logic transitions at the isolator input cause narrow (2 ns) pulses to be sent via the transformer to the decoder. The decoder is bistable and therefore either set or reset by the pulses indicating input logic transitions. In the absence of logic transitions at the input for more than 2 μ s, a periodic update pulse of the appropriate polarity is sent to ensure dc correctness at the output. If the decoder receives none of these update pulses for more than about 5 μ s, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a logic high state by the watchdog timer circuit.

The limitation on the ADuM1100's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The analysis that follows defines the conditions under which this can occur. The ADuM1100's 3.3 V operating condition is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output are greater than 1.0 V in amplitude. The decoder has sensing thresholds at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The induced voltage induced across the receiving coil is given by

$$V = (-\mathrm{d}\beta/\mathrm{d}t) \sum_{n} r_n^2, n = 1, 2, \dots, N$$

where:

 β = magnetic flux density (Gauss).

N = number of turns in receiving coil.

 r_n = radius of nth turn in receiving coil (cm).

Given the geometry of the receiving coil in the ADuM1100 and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 19.

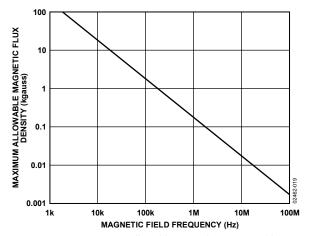


Figure 19. Maximum Allowable External Magnetic Field

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and will not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1100 transformers. Figure 20 expresses these allowable current magnitudes as a function of frequency for selected distances. As can be seen, the ADuM1100 is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example noted, one would have to place a current of 0.5 kA 5 mm away from the ADuM1100 to affect the component's operation.

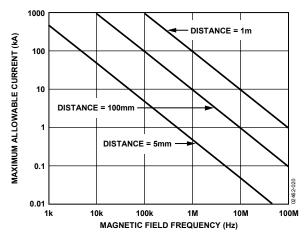


Figure 20. Maximum Allowable Current for Various Current-to-ADuM1100 Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current of the ADuM1100 isolator is a function of the supply voltage, the input data rate, and the output load.

The input supply current is given by

$$I_{DDI} = I_{DDI(Q)}$$
 $f \le 0.5 f_r$

$$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$$
 f > 0.5 f_r

The output supply current is given by

$$I_{DDO} = I_{DDO(Q)} f \le 0.5 f_r$$

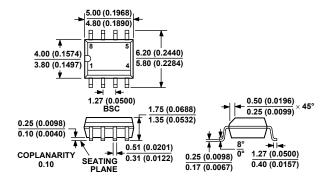
$$I_{DDO} = (I_{DDO(D)} + (0.5 \times 10^{-3}) \times C_L V_{DDO}) \times (2f - f_r) + I_{DDO(Q)}$$

 $f > 0.5f_r$

where:

 $I_{DDI(D)}$, $I_{DDO(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).

 C_L is output load capacitance (pF).


 V_{DDO} is the output supply voltage (V).

f is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling).

 f_r is the input stage refresh rate (Mbps).

 $I_{DDI(Q)}$, $I_{DDO(Q)}$ are the specified input and output quiescent supply currents (mA).

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 21. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Max Data Rate (Mbps)	Minimum Pulse Width (ns)	Package Description	Package Option
ADuM1100AR	-40°C to +105°C	25	40	8-Lead SOIC_N	R-8
ADuM1100AR-RL7	-40°C to +105°C	25	40	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100ARZ ¹	-40°C to +105°C	25	40	8-Lead SOIC_N	R-8
ADuM1100ARZ-RL7 ¹	-40°C to +105°C	25	40	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100BR	-40°C to +105°C	100	10	8-Lead SOIC_N	R-8
ADuM1100BR-RL7	-40°C to +105°C	100	10	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100BRZ ¹	-40°C to +105°C	100	10	8-Lead SOIC_N	R-8
ADuM1100BRZ-RL7 ¹	-40°C to +105°C	100	10	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100UR	-40°C to +105°C	100	10	8-Lead SOIC_N	R-8
ADuM1100UR-RL7	-40°C to +105°C	100	10	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100URZ ¹	-40°C to +105°C	100	10	8-Lead SOIC_N	R-8
ADuM1100URZ-RL7 ¹	-40°C to +105°C	100	10	8-Lead SOIC_N, 1,000 Piece Reel	R-8
ADuM1100EVAL				Evaluation Board	

 $^{^{1}}$ Z = Pb-free part.

ADuM1100		
----------	--	--

NOTES