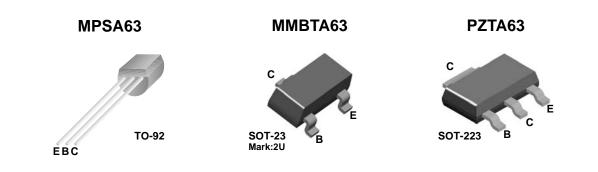
MPSA63 / MMBTA63 / PZTA63 — PNP Darlington Transistor


August 2010

MPSA63 / MMBTA63 / PZTA63 PNP Darlington Transistor

Features

- This device is designed for applications requiring extremely high current gain at currents to 800 mA.
- Sourced from Process 61.

Absolute Maximum Ratings * $T_a = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	-30	V
V _{CBO}	Collector-Base Voltage	-30	V
V _{EBO}	Emitter-Base Voltage	-10	V
Ι _C	Collector Current - Continuous	-1.2	A
T _{J,} T _{stg}	Operating and Storage Junction Temperature Range	- 55 to +150	°C

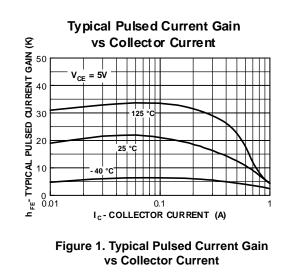
* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. **NOTES:**

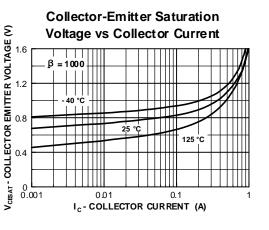
1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Max.			Units
		MPSA63	*MMBTA63	**PZTA63	Units
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	1,000 8.0	mW mW/°C
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	83.3			°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

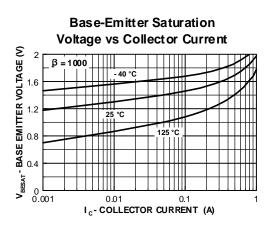

* Device mounted on FR-4 PCB $1.6" \times 1.6" \times 0.06"$.

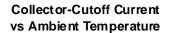

** Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead min. 6cm².

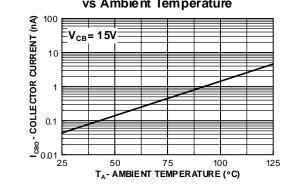
Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Character	istics				
BV _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = -100 \mu A, I_{\rm B} = 0$	-30		V
I _{CBO}	Collector-Cutoff Current	$V_{CB} = -30V, I_{E} = 0$		-100	nA
I _{EBO}	Emitter-Cutoff Current	V _{EB} = -10V, I _C = 0		-100	nA
On Character	istics *				
h _{FE}	DC Current Gain	$I_{C} = -10$ mA, $V_{CE} = -5.0$ V $I_{C} = -100$ mA, $V_{CE} = -5.0$ V	5,000 10,000		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = -100mA, I _B = -0.1mA		-1.5	V
V _{BE(on)}	Base-Emitter On Voltage	I _C = -100mA, V _{CE} = -5.0V		-2.0	V
Small Signal	Characteristics				
f _T	Current Gain - Bandwidth Product	$I_{C} = -10$ mA, $V_{CE} = -5.0$ V, f = 100MHz	125		MHz

* Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0\%$

Typical Performance Characteristics






© 2010 Fairchild Semiconductor Corporation MPSA63 / MMBTA63 / PZTA63 Rev. A1

Typical Performance Characteristics (continued)

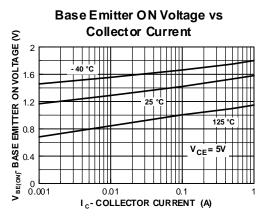


Figure 4. Base-Emitter On Voltage vs Collector Current

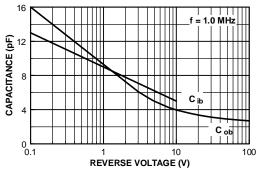


Figure 6. Input and Output Capacitance vs Reverse Bias Voltage

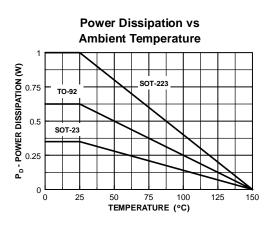


Figure 7. Power Dissipation vs Ambient Temperature

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® FACT® FAST® FastvCore™ FETBench™ FlashWriter®* FPS™	F-PFS™ FRFET® Global Power Resource Green FPS™ Green FPS™ e-Series™ Grax™ GTO™ IntelliMAX™ ISOPLANAR™ MSOPLANAR™ MisorPET™ MicroPak™ MillerDrive™ Motion-SPM™ OptoHITT™ OPTOLOGIC® OPTOPLANAR®	Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Duiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SignalWise™ STEALTH™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8 SuperSOT™-8	Figure System (*) The Power Franchise (*) Pranchise TinyBoost TM TinyBuck TM TinyLogic (*) TINYOPwer TM TinyPower TM TinyPower TM TinyPWM TM TinyEuctor TriFault Detect TM TRUECURRENT ^{TM*} µSerDes TM UHC (*) UHTA FRFET TM VisualMax TM XSTM
* T / (0 / 0		a hu Estadid Carta a duata	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.