

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

May 2013

FSA2257 Low R_{ON}, Low-Voltage Dual SPDT Bi-Directional Analog Switch

Features

- Maximum 1.15 Ω On Resistance (R_{ON}) at 4.5 V V_{CC}
- 0.3 Ω Maximum R_{ON} Flatness at +5 V V_{CC}
- Space-Saving MicroPak™
- Broad V_{CC} Operating Range: 1.65 V to 5.50 V
- Fast Turn-On and Turn-Off Time
- Break-Before-Make Enable Circuitry
- Over-Voltage Tolerant TTL-Compatible Control Input

Applications

- Cell Phone
- PDA
- Mobile Devices

Description

The FSA2257 is a high-performance bi-directional dual Single-Pole/Double-Throw (SPDT) analog switch. This switch can be configured as either a multiplexer or a demultiplexer by select pins. The device features ultra-low R_{ON} of 1.3 Ω maximum at 4.5 V V_{CC} and operates over the wide V_{CC} range of 1.65 V to 5.50 V. The device is fabricated with submicron CMOS technology to achieve fast switching speeds and is designed for break-beforemake operation. The select input is TTL-level compatible.

Ordering Information

Part Number	Package Number	Top Mark	Package Description	Packing Method
FSA2257L10X	MAC10A	EP	10-Lead MicroPak™, 1.6 x 2.1 mm	5000 Units Tape and Reel
FSA2257MTCX	MCT14	FSA2257	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide	2500 Units Tape and Reel
FSA2257MUX	MUA10A	FSA 2257	10-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0 mm	4000 Units Tape and Reel

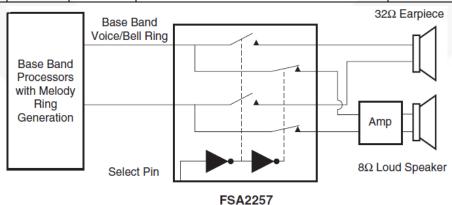
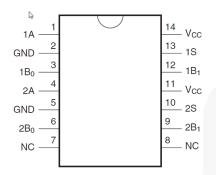



Figure 1. Block Diagram

Pin Configurations

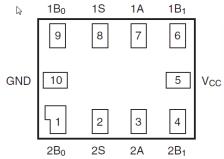
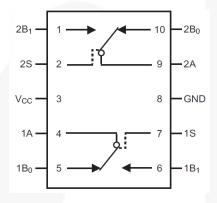



Figure 2. Pin Assignments for TSSOP (Top View)

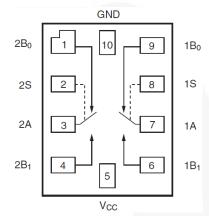


Figure 4. Pin Assignments for MSOP (Top View)

Figure 5. Analog Symbols (Top Through View)

Pin Definitions

Pin# TSSOP	Pin# MicroPak™	Pin # MSOP	Name	Description
1	7	4	1A	Data Ports
2,5	10	8	GND	Ground
3	9	5	1B ₀	Data Ports
4	3	9	2A	Data Ports
6	1	10	2B ₀	Data Ports
7,8			NC	No Connect
9	4	1	2B ₁	Data Ports
10	2	2	28	Control Inputs
11,14	5	3	Vcc	Power Supply
12	6	6	1B ₁	Data Ports
13	8	7	1S	Control Inputs

Truth Table

Control Input (S)	Function
Low Logic Level	B₀ connected to A
High Logic Level	B ₁ connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramet	ter	Min.	Max.	Unit		
V _{CC}	Supply Voltage		-0.5	6.0	V		
V _{SW}	DC Switch Voltage ⁽¹⁾		-0.5	V _{CC} + 0.5	V		
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	6.0	V			
	Input Diode Current		-50	-50			
I_{IK}	Switch Current			200 mA 400	mA		
	Peak Switch Current (Pulsed at 1 ms	duration, <10% duty cycle)		400			
T _{STG}	Storage Temperature Range		-65	+150	°C		
TJ	Maximum Junction Temperature			+150	°C		
TL	Lead Temperature (Soldering, 10 sec	conds)		+260	°C		
LCD		Human Body Model, JESD22-A114		8000	V		
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	-0.5 -0.5 -50 uty cycle) -65	2000	V		

Note

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	1.65	5.50	V
V_{CNTRL}	Control Input Voltage ⁽²⁾	0	V _{CC}	V
V _{SW}	Switch Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. Unused control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C		С		T _A =-40°C to +85°C	
				Min.	Тур.	Max.	Min.		
			1.8 to 2.7				1.0		
V_{IH}	Input Voltage High		2.7 to 3.6				2.0	0.4 0.6 0.8 1.0 1.0 20 40 4.3 1.30 4.5 2.3 0.15 0.4 1.0	V
			4.5 to 5.5				2.4		
			1.8 to 2.7					0.4	
V_{IL}	Input Voltage Low		2.7 to 3.6					0.6	V
			4.5 to 5.5					0.8	
	Control Input		2.7 to 3.6				-1.0	1.0	
I _{IN}	Leakage	V _{IN} =0 V to V _{CC}	4.5 to 5.5				-1.0	1.0	μΑ
I _{NO(OFF)} , I _{NC(OFF)}	Off Leakage Current of Port B ₀ and B ₁	A=1 V, 4.5 V, B ₀ or B ₁ =1 V, 4.5 V	5.5	-2	\	2	-20	20	nA
I _{A(ON)}	On Leakage Current of Port A	A=1 V, 4.5V, B ₀ or B ₁ =1 V,4.5 V or Floating	5.5	-4		2	-40	40	nA
	Switch On Resistance	I _{OUT} =100 mA,	1.8		4.6				Ω
		B ₀ or B ₁ =1.5 V	2.7		2.6	4.0		4.3	
Ron	MicroPak ⁽³⁾	I _{OUT} =100 mA, B ₀ or B ₁ =3.5 V	4.5		0.95	1.15		1.30	
TON	Switch On Resistance MSOP/TSSOP ⁽³⁾	I _{OUT} =100 mA, B ₀ or B ₁ =1.5 V	2.7		2.8			4.5	
		I _{OUT} =100 mA, B ₀ or B ₁ =3.5 V	4.5		1.5			2.3	
A.D.	On Resistance Matching Between Channels MicroPak (4)	I _{OUT} =100 mA,	4.5		0.06	0.12		0.15	0
$\Delta R_{ ext{ON}}$ -	On Resistance Matching Between Channels MSOP / TSSOP ⁽⁴⁾	B ₀ or B ₁ =3.5 V	4.5		0.7			0.3	Ω
	\\.	I _{OUT} =100 mA, B ₀ or	1.8		3.0				
_	On Resistance	B _I =0 V, 0.75 V,1.5 V	2.7		1.4				
I _{A(ON)} R _{ON} AR _{ON}	Flatness ⁽⁵⁾	I _{OUT} =100 mA, B ₀ or B _I =0 V, 1 V, 2 V	4.5		0.2	0.3		0.4	Ω
1-	Quiescent Supply	V _{IN} =0 V or V _{CC} ,	3.6		0.1	0.5		1.0	
I _{CC}	Current	I _{OUT} =0 V	5.5		0.1	0.5		1.0	μΑ

Notes:

- On resistance is determined by the voltage drop between A and B pins at the indicated current through the
- 4. \(\Delta R_{ON} = R_{ONmin} \) measured at identical V_{CC}, temperature, and voltage.
 5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol Parameter		Conditions	V _{cc} (V)	Т	T _A =+25°C			T _A =-40°C to +85°C		Figure
				Min.	Тур.	Max.	Min.	Max.		
		B ₀ or B ₁ =1.5 V,	1.8 to 2.7		75					
t _{ON}	Turn-On	R _L =50 Ω , C _L =35 pF	2.7 to 3.6	12		50		60	ns	Figure 6
ION	Time	B_0 or B_1 =3.0 V, R_L =50 Ω, C_L =35 pF	4.5 to 5.5			35		40	110	i iguio o
		B ₀ or B ₁ =1.5 V,	1.8 to 2.7		20					
t _{OFF}	Turn-Off	$R_L=50 \Omega$, $C_L=35 pF$	2.7 to 3.6			20		30	ns	Figure 6
TOFF	Time	B_0 or B_1 =3.0 V, R_L =50 Ω, C_L =35 pF	4.5 to 5.5			15		20	113	i igaic 0
	Break-	B_0 or B_1 =1.5 V, R_L =50 Ω, C_L =35 pF	2.7 to 3.6				1			Figure 7
t _{BBM}	Before-Make Time	B_0 or B_1 =3.0 V, R_L =50 Ω, C_L =35 pF	4.5 to 5.5		20		1		ns	
Q	Charge	C _L =1.0 nF, V _{GEN} =0 V,	2.7 to 3.6		20				~C	Figure 9
Q	Injection	R _{GEN} =0 Ω	4.5 to 5.5		10				рC	rigule 9
OIRR	Off Isolation	f =1 MHz, R_L =50 $Ω$	2.7 to 3.6		-70				dB	Figure 8
OIKK	On isolation	= 1 WII 12,	4.5 to 5.5		-70				uБ	rigule 8
			2.7 to 3.6		-75					
Xtalk	Crosstalk	f=1 MHz, R_L =50 Ω	4.5 to 5.5		-75				dB	Figure 8
DW	-3 db	B 50.0	2.7 to 3.6		200				N 41 1-	Figure
BW Bandwidth	R _L =50 Ω	4.5 to 5.5		200				MHz	11	
THD	Total Harmon	R _L =600 Ω, V _{IN} =0.5 V _{PP}	2.7 to 3.6		0.002				%	Figure
1110	Distortion	f=20 Hz to 20 kHz	4.5 to 5.5		0.002				70	12

Capacitance

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C		Unit	Figure		
				Min.	Тур.	Max.		H2)	
C _{IN}	Control Pin Input Capacitance	f=1 MHz	0		3.5		pF	Figure 10	
C _{OFF}	B Port Off Capacitance	f=1 MHz	4.5		12.0		pF	Figure 10	
C _{ON}	A Port On Capacitance	f=1 MHz	4.5		40.0		pF	Figure 10	

AC Loadings and Waveforms

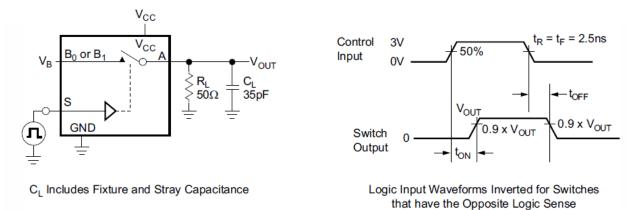
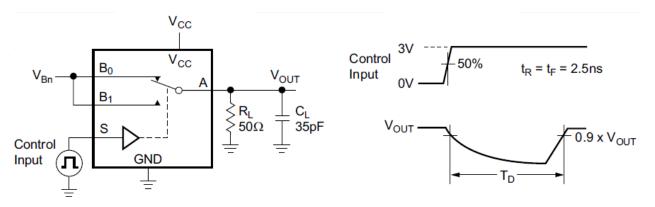



Figure 6. Turn On / Off Timing

C_L Includes Fixture and Stray Capacitance

Figure 7. Break Before Make Timing

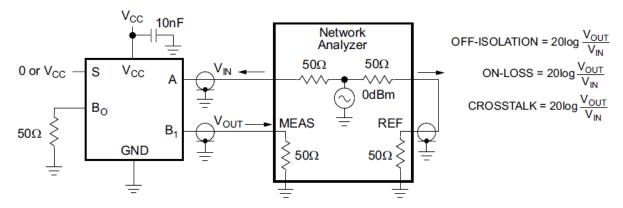


Figure 8. Off Isolation and Crosstalk

AC Loadings and Waveforms (Continued)

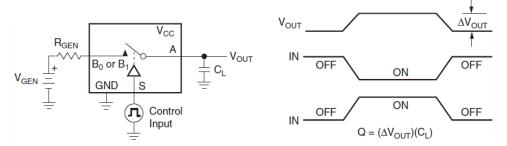


Figure 9. Charge Injection

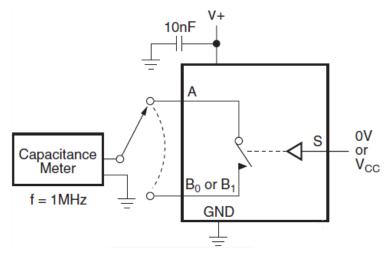
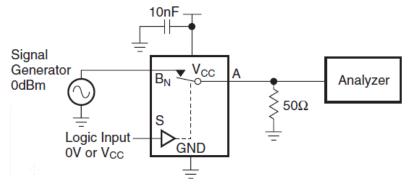
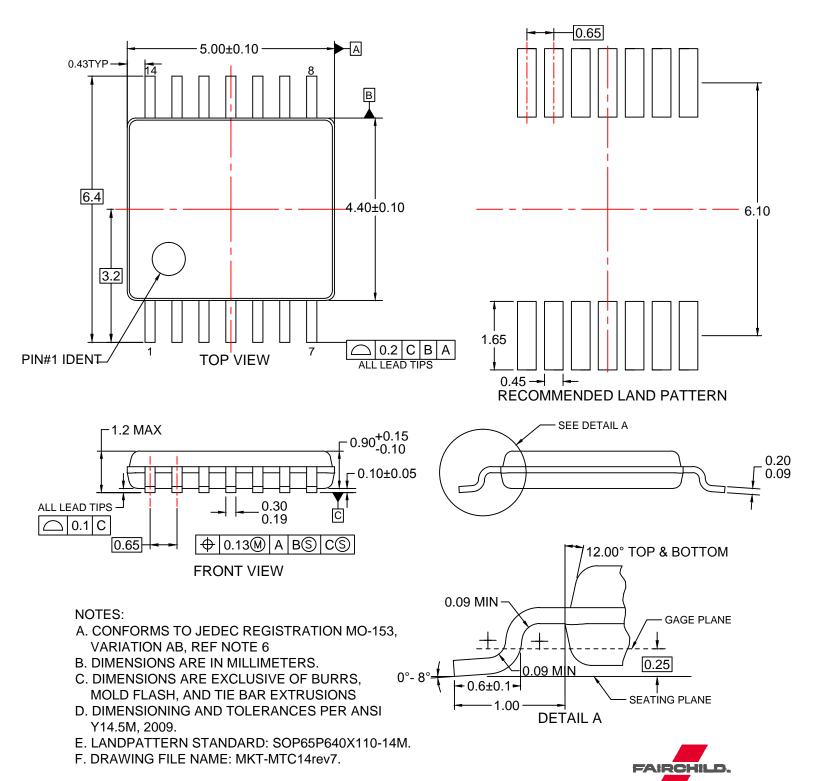
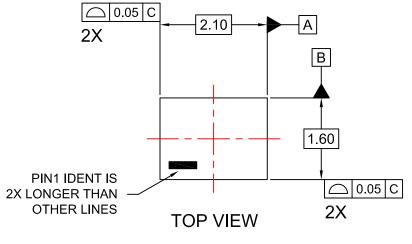


Figure 10. On / Off Capacitance Measurement Setup

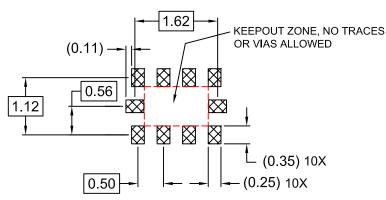
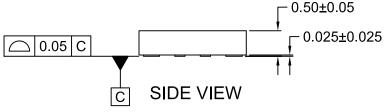
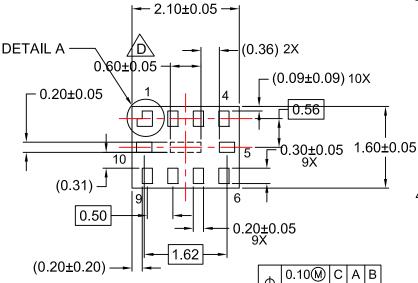

Figure 11. Bandwidth

Figure 12. Harmonic Distortion





RECOMMENDED LAND PATTERN

 (0.10 ± 0.10)

 $|\Psi|_{0.05 \textcircled{M}}|_{ extsf{C}}|$ ALL FEATURES

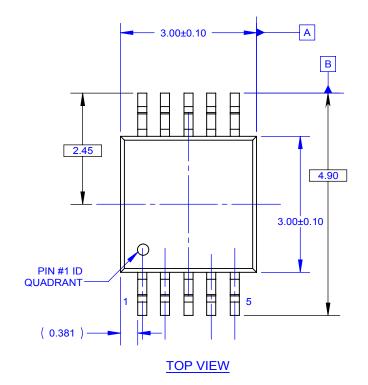
0.15±0.05

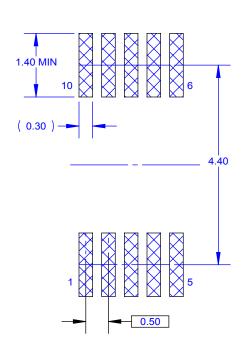
DETAIL A 2X SCALE

NOTES:

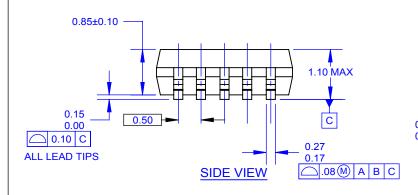
A. PACKAGE CONFORMS TO JEDEC REGISTRATION MO-255, VARIATION UABD.

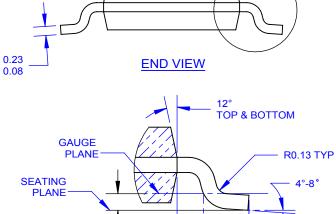
0.20±0.05


- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. PRESENCE OF CENTER PAD IS PACKAGE SUPPLIER DEPENDENT. IF PRESENT IT IS NOT INTENDED TO BE SOLDERED AND HAS A BLACK OXIDE FINISH.
 - E. DRAWING FILENAME: MKT-MAC10Arev6.
 - F. DIMENSIONS WITHIN () ARE UNCONTROLLED



BOTTOM VIEW


THIS DRAWING IS THE PROPERTY OF FAIRCHILD SEMICONDUCTOR CORPORATION. NO USE THEREOF SHALL BE MADE OTHER THAN AS A REFERENCE FOR PROPOSALS AS SUMMITTED TO FARRCHILD SEMICONDUCTOR CORPORATION FOR JOSS TO BE EXECUTED IN CONFORM WITH SUCH PROPOSALS UNLESS THE CONSENT OF SAID FAIRCHILD SEMICONDUCTOR COR POPATION HAS PREVIOUSLY BEED OSTANDE. NO PART OF THIS DRAWING SHALL BE COPIED OR DUPLICATED OR ITS CONTENTS DISCLOSED. THE INFORMATION CONTAINED ON THIS DRAWING IS CONFIDENTIAL AND PROPRIETERS.


	REVISIONS						
NBR	DESCRIPTION	DATE	BY/APP'D				
В	REDREW FORMER NSC DWG	07JUN2006	H.ALLEN				
2	* REMOVE SITE ADDRESS AND CHANGE REVISION TO NUMERICAL & CHANGED LAND PATITERN TO IPC. * CHANGE LEAD WIDTH FROM 0.27MAX TO 0.33MAX. * REMOVE DATE OF JEDEC REVISION	20AUG2009	KHLEE/FSSZ				
3	* REVERT LEAD WIDTH TO 0.27MAX.	24SEP2009	KHLEE/FSSZ				

LAND PATTERN RECOMMENDATION

0.22

A

NOTES: UNLESS OTHERWISE SPECIFIED

- A. THIS PACKAGE CONFORMS TO JEDEC MO-187 VARIATION BA.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS,
 MOLD FLASH AND TIE BAR EXTRUSIONS.
 D. DIMENSIONS AND TOLERANCES AS PER ASME
- Y14.5-1994.
- E. LAND PATTERN AS PER IPC7351#SOP50P490X110-10AN
- F. FILE NAME: MKT-MUA10AREV3

DETAIL A SCALE 20:1

0.80 0.40

--(0.95)**•**

APPROVALS	DATE					
BOBOY MALDO	24SEP09			RCHILE		
CHECKED: KH LEE		SEMIC	CONDUCTO	Rm		
APPROVED: BY HUANG	10LD, MSOP, JEDEC					
APPROVED: HOWARD ALLEN		MO-187, 3.0MM WIDE				
PROJECTION		SCALE SIZE DRAWING NUMBER 1:1 N/A MKT-MUA10A			REV 3	
[MM] Ψ INCH	_	FORMERLY: N/A SHEET: 1			OF 1	

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative