

ATmega324PB

DATASHEET PRELIMINARY SUMMARY

Introduction

The Atmel[®] ATmega324PB is a low-power CMOS 8-bit microcontroller based on the AVR[®] enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega324PB achieves throughputs close to 1MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed.

Feature

High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family

- Advanced RISC Architecture
 - 131 Powerful Instructions
 - Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 32KBytes of In-System Self-Programmable Flash program memory
 - 1KBytes EEPROM
 - 2KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- Atmel QTouch® library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard

- Extensive On-chip Debug Support
- Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Peripheral Touch Controller (PTC)
 - · Capacitive touch buttons, sliders and wheels
 - 32 Self-cap channels and 256 mutual cap channels
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - Three 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Ten PWM Channels
 - 8-channel 10-bit ADC
 - Differential mode with selectable gain at 1×, 10× or 200×
 - Three Programmable Serial USART
 - Two Master/Slave SPI Serial Interface
 - Two Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
 - Clock failure detection mechanism and switch to 1MHz internal RC clock in case of failure
- I/O and Packages
 - 39 programmable I/O lines
 - 44-pin TQFP and 44-pin QFN/MLF
- Operating Voltage:
 - 1.8 5.5V
- Temperature Range:
 - -40°C to 105°C
- Speed Grade:
 - 0 4MHz @ 1.8 5.5V
 - 0 10MHz @ 2.7 5.5.V
 - 0 20MHz @ 4.5 5.5V
- Power Consumption at 1MHz, 1.8V, 25°C
 - Active Mode: 0.4mA
 - Power-down Mode: 0.2µA
 - Power-save Mode: 1.3µA (Including 32kHz RTC)

Table of Contents

Int	troduction	1
Fe	eature	1
1.	Description	4
2.	Configuration Summary	5
3.	Ordering Information	6
4.	Block Diagram	7
5.	Pin Configurations	8
	5.1. Pin Descriptions	8
6.	I/O Multiplexing	10
7.	General Information	12
	7.1. Resources	12
	7.2. Data Retention	12
	7.3. About Code Examples	12
	7.4. Capacitive Touch Sensing	12
8.	Packaging Information	13
	8.1. 44A	13
	8.2. 44M1	14
9.	Instruction Set Summary	15

1. Description

The Atmel[®] ATmega324PB is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega324PB achieves throughputs close to 1MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed.

The Atmel AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in a single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega324PB provides the following features: 32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 1Kbytes EEPROM, 2Kbytes SRAM, 39 general purpose I/O lines, 32 general purpose working registers, five flexible Timer/Counters with compare modes, internal and external interrupts, three serial programmable USART, two byte-oriented 2-wire Serial Interface (I2C), two SPI serial port, a 8-channel 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming, Clock failure detection mechanism and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. PTC with enabling up to 32 self-cap and 256 mutualcap sensors. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. Also ability to run PTC in power-save mode/wake-up on touch and Dynamic on/off of PTC analog and digital portion. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, PTC, and ADC to minimize switching noise during ADC conversions. In Standby mode, the crystal/ resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

Atmel offers the QTouch[®] library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS[®]) technology for unambiguous detection of key events. The easy-to-use QTouch Composer allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega324PB is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega324PB is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

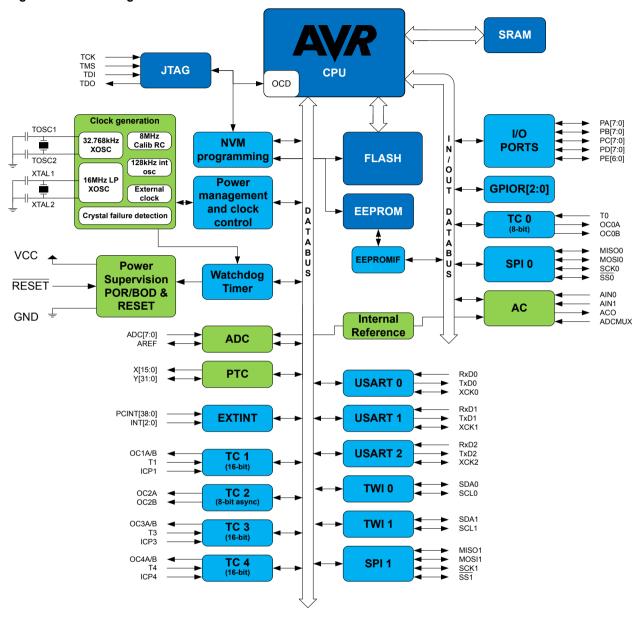
2. Configuration Summary

Features	ATmega324PB
Pin count	44
Flash (KB)	32
SRAM (KB)	2
EEPROM (KB)	1
General Purpose I/O lines	39
SPI	2
TWI (I ² C)	2
USART	3
ADC	10-bit 15ksps
ADC channels	8
AC	1
8-bit Timer/Counters	2
16-bit Timer/Counters	3
PWM channels	10
PTC	Available
Peripheral Touch Controller (PTC) channels (X- x Y-Lines) for mutual capacitance	256 (16 x 16)
Peripheral Touch Controller (PTC) channels for self capacitance (Y-Lines only)	32
Clock Failure Detector (CFD)	Available
Output Compare Modulator (OCM1C2)	Available

3. Ordering Information

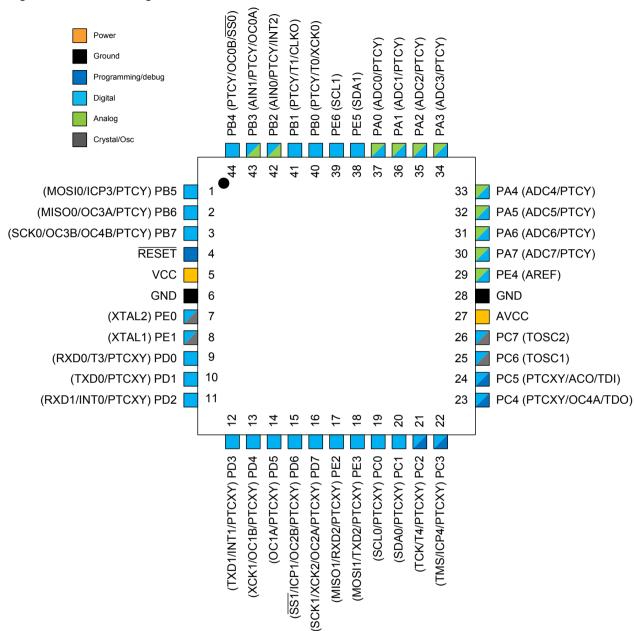
Speed [MHz]	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega324PB-AU ATmega324PB-AUR ⁽³⁾ ATmega324PB-MU ATmega324PB-MUR ⁽³⁾	44A 44A 44M1 44M1	Industrial (-40°C to 85°C)
		ATmega324PB-AN ATmega324PB-ANR ⁽³⁾ ATmega324PB-MN ATmega324PB-MNR ⁽³⁾	44A 44A 44M1 44M1	Industrial (-40°C to 105°C)

Note: 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and minimum quantities.


- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. Tape & Reel.

Package Typ	De la companya de la
44A	44-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)
44M1	44-pad, 7 x 7 x 1.9mm body, Lead Pitch 0.50mm, Very-thin Fine pitch, Quad Flat No Lead Package/Quad Flat No-Lead/Micro Lead Frame Package (VQFN/QFN/MLF)

4. Block Diagram


Figure 4-1 Block Diagram

5. Pin Configurations

Figure 5-1 Pinout ATmega324PB

5.1. Pin Descriptions

5.1.1. VCC

Digital supply voltage.

5.1.2. GND

Ground.

5.1.3. Port A (PA[7:0])

This port serves as analog inputs to the Analog-to-digital Converter.

This is an 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

5.1.4. Port B (PB[7:0])

This is an 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port also serves the functions of various special features.

5.1.5. Port C (PC[7:0])

This is an 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port also serves the functions of the JTAG interface, along with special features.

5.1.6. Port D (PD[7:0])

This is an 8-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port also serves the functions of various special features.

5.1.7. Port E (PE6:0) XTAL1/XTAL2/AREF

This is a 7-bit bi-directional GPIO port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. PE0 and PE1 are multiplexed with XTAL1 and XTAL2 input. PE4 is multiplexed with AREF for the A/D Converter.

5.1.8. **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

5.1.9. AVCC

AVCC is the supply voltage pin for Port A and the Analog-to-digital Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

6. I/O Multiplexing

Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the peripheral functions.

The following table describes the peripheral signals multiplexed to the PORT I/O pins.

Table 6-1 PORT Function Multiplexing

No.	PAD	EXTINT	PCINT	ADC/AC	PTC X	PTC Y	osc	T/C # 0	T/C # 1	USART	I2C	SPI	JTAG
1	PB[5]		PCINT13			Y29		ICP3				MOSI0	
2	PB[6]		PCINT14			Y30		ОСЗА				MISO0	
3	PB[7]		PCINT15			Y31		ОС3В	OC4B			SCK0	
4	RESET												
5	VCC												
6	GND												
7	PE[0]		PCINT32				XTAL2						
8	PE[1]		PCINT33				XTAL1						
9	PD[0]		PCINT24		X0	Y8		Т3		RxD0			
10	PD[1]		PCINT25		X1	Y9				TxD0			
11	PD[2]	INT0	PCINT26		X2	Y10				RxD1			
12	PD[3]	INT1	PCINT27		Х3	Y11				TXD1			
13	PD[4]		PCINT28		X4	Y12			OC1B	XCK1			
14	PD[5]		PCINT29		X5	Y13			OC1A				
15	PD[6]		PCINT30		X6	Y14		OC2B	ICP1			SS1	
16	PD[7]		PCINT31		X7	Y15		OC2A		XCK2		SCK1	
17	PE[2]				X8	Y16				RxD2		MISO1	
18	PE[3]				X9	Y17				TxD2		MOSI1	
19	PC[0]		PCINT16		X10	Y18					SCL0		
20	PC[1]		PCINT17		X11	Y19					SDA0		
21	PC[2]		PCINT18		X12	Y20			T4				TCK
22	PC[3]		PCINT19		X13	Y21			ICP4				TMS
23	PC[4]		PCINT20		X14	Y22			OC4A				TDO
24	PC[5]		PCINT21	ACO	X15	Y23							TDI
25	PC[6]		PCINT22				TOSC1						
26	PC[7]		PCINT23				TOSC2						
27	AVCC												
28	GND												
29	PE[4]			AREF									
30	PA[7]		PCINT7	ADC7		Y7							
31	PA[6]		PCINT6	ADC6		Y6							
32	PA[5]		PCINT5	ADC5		Y5							
33	PA[4]		PCINT4	ADC4		Y4							
34	PA[3]		PCINT3	ADC3		Y3							

No.	PAD	EXTINT	PCINT	ADC/AC	ртс х	PTC Y	osc	T/C # 0	T/C # 1	USART	I2C	SPI	JTAG
35	PA[2]		PCINT2	ADC2		Y2							
36	PA[1]		PCINT1	ADC1		Y1							
37	PA[0]		PCINT0	ADC0		Y0							
38	PE[5]										SDA1		
39	PE[6]										SCL1		
40	PB[0]		PCINT8			Y24		ТО		XCK0			
41	PB[1]		PCINT9			Y25	CLKO		T1				
42	PB[2]	INT2	PCINT10	AIN0		Y26							
43	PB[3]		PCINT11	AIN1		Y27		OC0A					
44	PB[4]		PCINT12			Y28		OC0B				<u>SS0</u>	

7. General Information

7.1. Resources

A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.atmel.com/avr.

7.2. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

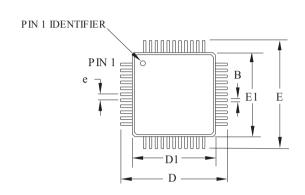
7.3. About Code Examples

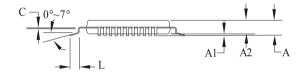
This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details.

7.4. Capacitive Touch Sensing

7.4.1. QTouch Library

The Atmel[®] QTouch[®] Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR[®] microcontrollers. The QTouch Library includes support for the Atmel QTouch and Atmel QMatrix[®] acquisition methods.


Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.


The QTouch Library is FREE and downloadable from the Atmel website at the following location: http://www.atmel.com/technologies/touch/. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.

8. Packaging Information

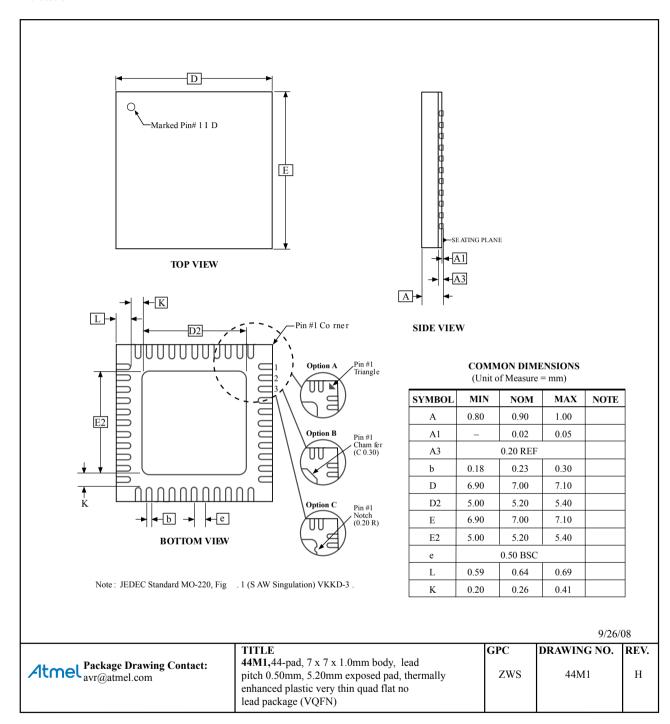
8.1. 44A

COMMON DIMENSIONS

(Unit of Measure = mm)

		1		
SYMBOL	MIN	NOM	MAX	NOTE
A	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
Е	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	0.37	0.45	
С	0.09	(0.17)	0.20	
L	0.45	0.60	0.75	
e		0.80 TYP		

Notes


- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10mm maximum.

06/02/2014

	TITLE	DRAWING NO.	REV.	l
Atmet Package Drawling Contact: packagedrawlings@atmel.com	44A , 44-lead, 10 x 10mm body size, 1.0mm body thickness, 0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)	44A	С	

8.2. 44M1

9. Instruction Set Summary

ARITHMETIC A					
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ADD	Rd, Rr	Add two Registers without Carry	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add two Registers with Carry	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract two Registers with Carry	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract Constant from Reg with Carry.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \cdot Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \cdot K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd v K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 - Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd v K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \cdot (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \cdot Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1

BRANCH INST	RUCTIONS				
Mnemonics	Operands	Description	Operation	Flags	#Clocks
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)		None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)		None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
СР	Rd,Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd - K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3

BRANCH INST	RUCTIONS				
Mnemonics	Operands	Description	Operation	Flags	#Clocks
SBIC	A, b	Skip if Bit in I/O Register Cleared	if (I/O(A,b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIS	A, b	Skip if Bit in I/O Register is Set	if (I/O(A,b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

BIT AND BIT-T	BIT AND BIT-TEST INSTRUCTIONS					
Mnemonics	Operands	Description	Operation	Flags	#Clocks	
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1	
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1	
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\neg Rd(7)$	Z,C,N,V	1	
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1	
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1	
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)¬Rd(30)	None	1	
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1	
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1	
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1	
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1	
SEC		Set Carry	C ← 1	С	1	
CLC		Clear Carry	C ← 0	С	1	

BIT AND BIT-TEST INSTRUCTIONS						
Mnemonics	Operands	Description	Operation	Flags	#Clocks	
SEN		Set Negative Flag	N ← 1	N	1	
CLN		Clear Negative Flag	N ← 0	N	1	
SEZ		Set Zero Flag	Z ← 1	Z	1	
CLZ		Clear Zero Flag	Z ← 0	Z	1	
SEI		Global Interrupt Enable	I ← 1	I	1	
CLI		Global Interrupt Disable	1 ← 0	1	1	
SES		Set Signed Test Flag	S ← 1	S	1	
CLS		Clear Signed Test Flag	S ← 0	S	1	
SEV		Set Two's Complement Overflow.	V ← 1	V	1	
CLV		Clear Two's Complement Overflow	V ← 0	V	1	
SET		Set T in SREG	T ← 1	Т	1	
CLT		Clear T in SREG	T ← 0	Т	1	
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1	
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1	

DATA TRANSFER INSTRUCTIONS					
Mnemonics	Operands	Description	Operation	Flags	#Clocks
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1$, Rd $\leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Decrement	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Increment	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Increment	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Increment	(Z) ← Rr, Z ← Z + 1	None	2

DATA TRANSFER INSTRUCTIONS					
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ST	-Z, Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
IN	Rd, A	In from I/O Location	Rd ← I/O (A)	None	1
OUT	A, Rr	Out to I/O Location	I/O (A) ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2

MCU CONTROL INSTRUCTIONS		TIONS			
Mnemonics	Operands	Description	Operation	Flags	#Clocks
NOP		No Operation	No Operation	None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42546AS-8-bit-AVR-ATmega324PB_Datasheet_Preliminary Summary-11/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.