

FEATURES

Narrow body SOIC 8-lead package Low power operation **5 V operation** 1.1 mA per channel maximum @ 0 Mbps to 2 Mbps 3.7 mA per channel maximum @ 10 Mbps 8.2 mA per channel maximum @ 25 Mbps **3 V operation** 0.8 mA per channel maximum @ 0 Mbps to 2 Mbps 2.2 mA per channel maximum @ 10 Mbps 4.8 mA per channel maximum @ 25 Mbps **Bidirectional communication** 3 V/5 V level translation High temperature operation: 105°C High data rate: dc to 25 Mbps (NRZ) **Precise timing characteristics** 3 ns maximum pulse-width distortion 3 ns maximum channel-to-channel matching High common-mode transient immunity: > 25 kV/µs Safety and regulatory approvals **UL** recognition 2500 V rms for 1 minute per UL 1577 **CSA Component Acceptance Notice #5A** VDE certificate of conformity DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 DIN EN 60950 (VDE 0805): 2001-12; DIN EN 60950: 2000 $V_{IORM} = 560 V peak$

APPLICATIONS

Size-critical multichannel isolation SPI® interface/data converter isolation RS-232/RS-422/RS-485 transceiver isolation Digital field bus isolation

Dual-Channel Digital Isolators ADuM1200/ADuM1201

GENERAL DESCRIPTION

The ADuM120x¹ are dual-channel digital isolators based on Analog Devices' *i*Coupler[®] technology. Combining high speed CMOS and monolithic transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, *i*Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM120x isolators provide two independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). Both parts operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. In addition, the ADuM120x provide low pulse-width distortion (<3 ns for CR grade) and tight channel-to-channel matching (<3 ns for CR grade). Unlike other optocoupler alternatives, the ADuM120x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

¹ Protected by U.S. Patents 5,952,849; 6,873,065; and other pending patents.

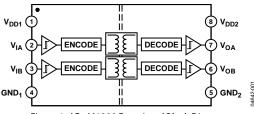


Figure 1. ADuM1200 Functional Block Diagram

FUNCTIONAL BLOCK DIAGRAMS

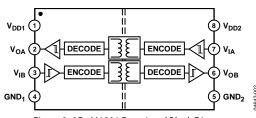


Figure 2. ADuM1201 Functional Block Diagram

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams 1
Revision History 2
Specifications
Electrical Characteristics—5 V Operation
Electrical Characteristics—3 V Operation
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V Operation7
Package Characteristics10
Regulatory Information10
Insulation and Safety-Related Specifications
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics11

Recommended Operating Conditions	11
Absolute Maximum Ratings	12
ESD Caution	12
Pin Configurations and Function Descriptions	13
Typical Performance Characteristics	14
Application Information	15
PC Board Layout	15
Propagation Delay-Related Parameters	15
DC Correctness and Magnetic Field Immunity	15
Power Consumption	16
Outline Dimensions	17
Ordering Guide	17

REVISION HISTORY

2/06—Rev. B to Rev. C	
Updated Format	Universal
Added Note 1	1
Changes to Absolute Maximum Ratings	12
Changes to DC Correctness and Magnetic Field	
Immunity Section	15

9/04—Rev. A to Rev. B

Changes to	Table 5	10
------------	---------	----

6/04—Rev. 0 to Rev. A

Changes to Format	Universal
Changes to General Description	1
Changes to Electrical Characteristics-5 V Operation.	3
Changes to Electrical Characteristics—3 V Operation.	5
Changes to Electrical Characteristics—Mixed 5 V/3 V	or
3 V/5 V Operation	7

4/04—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. 4.5 V \leq V_{DD1} \leq 5.5 V, 4.5 V \leq V_{DD2} \leq 5.5 V. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_A = 25°C, V_{DD1} = V_{DD2} = 5 V.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	I _{DDI (Q)}		0.50	0.60	mA	
Output Supply Current, per Channel, Quiescent	DDO (Q)		0.19	0.25	mA	
ADuM1200, Total Supply Current, Two Channels ¹						
DC to 2 Mbps						
V _{DD1} Supply Current	IDD1 (Q)		1.1	1.4	mA	DC to 1 MHz logic signal free
V _{DD2} Supply Current	IDD2 (Q)		0.5	0.8	mA	DC to 1 MHz logic signal free
10 Mbps (BR and CR Grades Only)						
VDD1 Supply Current	IDD1 (10)		4.3	5.5	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2 (10)}		1.3	2.0	mA	5 MHz logic signal freq.
25 Mbps (CR Grade Only)						
V _{DD1} Supply Current	I _{DD1 (25)}		10	13	mA	12.5 MHz logic signal freq.
VDD2 Supply Current	I _{DD2 (25)}		2.8	3.4	mA	12.5 MHz logic signal freq.
ADuM1201, Total Supply Current, Two Channels ¹						
DC to 2 Mbps						
VDD1 Supply Current	IDD1 (Q)		0.8	1.1	mA	DC to 1 MHz logic signal freq
VDD2 Supply Current	IDD2 (Q)		0.8	1.1	mA	DC to 1 MHz logic signal free
10 Mbps (BR and CR Grades Only)						
VDD1 Supply Current	I _{DD1 (10)}		2.8	3.5	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	IDD2 (10)		2.8	3.5	mA	5 MHz logic signal freq.
25 Mbps (CR Grade Only)						
V _{DD1} Supply Current	I _{DD1 (25)}		6.3	8.0	mA	12.5 MHz logic signal freq.
VDD2 Supply Current	I _{DD2 (25)}		6.3	8.0	mA	12.5 MHz logic signal freq.
For All Models						
Input Currents	I _{IA} , I _{IB}	-10	+0.01	+10	μA	$0 \leq V_{\text{IA}}, V_{\text{IB}} \leq V_{\text{DD1}} \text{ or } V_{\text{DD2}}$
Logic High Input Threshold	VIH	0.7 VDD1, VDD2			V	
Logic Low Input Threshold	VIL			0.3 V _{DD1} ,	V	
				V _{DD2}		
Logic High Output Voltages	Voah	V _{DD1} , V _{DD2} – 0.1	5.0		V	$I_{\text{Ox}} = -20 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$
	Vobh	V _{DD1} , V _{DD2} – 0.5	4.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	VOAL		0.0	0.1	V	$I_{\text{Ox}} = 20 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxL}}$
	VOBL		0.04	0.1	V	$I_{\text{Ox}} = 400 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxL}}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
SWITCHING SPECIFICATIONS						
ADuM120xAR						
Minimum Pulse Width ²	PW			1000	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ³		1			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	50		150	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^4$	PWD			40	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁵	t _{PSK}			100	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching ⁶	t _{PSKCD/OD}			50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		10		ns	$C_{L} = 15 \text{ pF}$, CMOS signal levels

Parameter	Symbol	Min	Тур	Мах	Unit	Test Conditions
ADuM120xBR						
Minimum Pulse Width ²	PW			100	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ³		10			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	20		50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse-Width Distortion, tplh – tphl ⁴	PWD			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Change vs. Temperature			5		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁵	t _{PSK}			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t _{PSKOD}			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	C _L = 15 pF, CMOS signal levels
ADuM120xCR						
Minimum Pulse Width ²	PW		20	40	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ³		25	50		Mbps	C _L = 15 pF, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	20		45	ns	C _L = 15 pF, CMOS signal levels
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^4$	PWD			3	ns	C _L = 15 pF, CMOS signal levels
Change vs. Temperature			5		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁵	t PSK			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t pskod			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		2.5		ns	C _L = 15 pF, CMOS signal levels
For All Models						
Common-Mode Transient Immunity at Logic High Output ⁷	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1}, V_{DD2}, V_{CM} = 1000 V,$ transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output ⁷	CM∟	25	35		kV/μs	$V_{lx} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Refresh Rate	f _r		1.2		Mbps	
Input Dynamic Supply Current, per Channel ⁸	I _{DDI (D)}		0.19		mA/Mbps	
Output Dynamic Supply Current, per Channel ⁸	I _{DDO (D)}		0.05		mA/Mbps	

¹ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total lpD1 and lDD2 supply currents as a function of data rate for ADuM1200 and ADuM1201 channel configurations.

² The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.

³ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.

 4 t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_k signal to the 50% level of the falling edge of the V_{ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{ix} signal to the 50% level of the V_{ox} signal.

⁵ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

⁶ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

⁷ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

⁸ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V OPERATION

All voltages are relative to their respective ground. 2.7 V \leq V_{DD1} \leq 3.6 V, 2.7 V \leq V_{DD2} \leq 3.6 V. All min/max specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at T_A = 25°C, V_{DD1} = V_{DD2} = 3.0 V.

1		Тур	Max	Unit	Test Conditions
IDDI (Q)		0.26	0.35	mA	
DDO (Q)		0.11	0.20	mA	
IDD1 (Q)		0.6	1.0	mA	DC to 1 MHz logic signal free
I _{DD2 (Q)}		0.2	0.6	mA	DC to 1 MHz logic signal free
I _{DD1 (10)}		2.2	3.4	mA	5 MHz logic signal freq.
I _{DD2 (10)}		0.7	1.1	mA	5 MHz logic signal freq.
DD1 (25)		5.2	7.7	mA	12.5 MHz logic signal freq.
I _{DD2 (25)}		1.5	2.0	mA	12.5 MHz logic signal freq.
IDD1 (Q)		0.4	0.8	mA	DC to 1 MHz logic signal free
I _{DD2 (O)}			0.8	mA	DC to 1 MHz logic signal free
					5 5
DD1 (10)		1.5	2.2	mA	5 MHz logic signal freq.
				mA	5 MHz logic signal freq.
					5 5 1
DD1 (25)		3.4	4.8	mA	12.5 MHz logic signal freq.
				mA	12.5 MHz logic signal freq.
					5 5 1
IIA, IIB	-10	+0.01	+10	μA	$0 \le V_{IA}, V_{IB}, \le V_{DD1} \text{ or } V_{DD2}$
	0.7 VDD1.			v	, , , , , , , , , , , , , , , , , , , ,
	V _{DD2}				
VIL			0.3 V _{DD1} ,		
			V _{DD2}		
Voah	V _{DD1} , V _{DD2} – 0.1	3.0		V	$I_{Ox} = -20 \ \mu A$, $V_{Ix} = V_{IxH}$
V _{OBH}	V_{DD1} , $V_{DD2} = 0.5$	2.8		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
VOAL	• UU2 U.J	0.0	0.1	v	$I_{0x} = 20 \ \mu A, V_{1x} = V_{1xL}$
					$I_{Ox} = 400 \ \mu A, V_{Ix} = V_{IxL}$
• OBL					$I_{0x} = 4 \text{ mA}, V_{1x} = V_{1xL}$
		0.2	0.1	•	
D\//			1000	nc	C _L = 15 pF, CMOS signal level
1 VV	1		1000		$C_L = 15 \text{ pF}$, CMOS signal level
tour tour			150		$C_L = 15 \text{ pF}$, CMOS signal level
-	50				$C_L = 15 \text{ pF}$, CMOS signal level $C_L = 15 \text{ pF}$, CMOS signal level
					$C_L = 15 \text{ pF}$, CMOS signal level $C_L = 15 \text{ pF}$, CMOS signal level
					$C_L = 15 \text{ pF}$, CMOS signal level $C_L = 15 \text{ pF}$, CMOS signal level
		10	50		$C_L = 15 \text{ pF}$, CMOS signal level $C_L = 15 \text{ pF}$, CMOS signal level
	IDDO (Q) IDD1 (Q) IDD2 (Q) IDD1 (10) IDD2 (10) IDD2 (25) IDD1 (25) IDD1 (Q) IDD1 (10) IDD2 (Q) IDD1 (10) IDD2 (25) IDD1 (25) IDD1 (25) IDD2 (25) ILA, IIB VIH VIL VOAH	IDDD (Q) IDD1 (Q) IDD1 (Q) IDD1 (D) IDD1 (10) IDD1 (D) IDD1 (25) IDD1 (D) IDD1 (Q) IDD1 (D) IDD1 (D) IDD2 (D) IDD1 (25) IDD2 (D) IDD1 (25) IDD2 (D) IDD1 (25) IDD2 (D) VIL VOAH VOAH VDD1, VDD1, VDD1, VDD1, VDD1, VDD1, VDD1, VOBL 1 PW 1 tPWL 50 tPWL 50	IDDO (Q) 0.11 IDD1 (Q) 0.6 IDD1 (10) 2.2 IDD1 (10) 2.2 IDD1 (20) 0.7 IDD1 (25) 5.2 IDD1 (10) 0.4 IDD1 (25) 1.5 IDD1 (20) 0.4 IDD1 (20) 0.4 IDD1 (20) 0.4 IDD1 (20) 1.5 IDD1 (20) 3.4 IDD1 (25) 3.4 VIL VDD1, VDD2 2.8 VUL 2.8 VOAH VDD1, VOBH 0.0 VOBL 0.0 0.04 0.2 PW 1 tPHL, tPLH 50 PWD 1 tPSK 1 tPSK 1 tPSK 1 tPSK <td>IDDD (Q) 0.11 0.20 IDD1 (Q) 0.6 1.0 IDD1 (Q) 0.2 0.6 IDD1 (10) 2.2 3.4 IDD1 (20) 0.7 1.1 IDD1 (25) 5.2 7.7 IDD1 (20) 0.4 0.8 IDD1 (20) 0.4 0.8 IDD1 (20) 0.4 0.8 IDD1 (20) 1.5 2.2 IDD1 (20) 1.5 2.2 IDD1 (20) 3.4 4.8 IDD1 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IA, IB -10 +0.01 +10 VH 0.7 VDD1, VDD2 VDD1, VDD2 0.3 VDD1, VDD2 VaH VDD1, VDD2 - 0.5 0.0 0.1 VOAH VDD1, VDD2 - 0.5 0.0 0.1 VOAL VDD1, VOBL 0.4 0.1 PW 1 1000 100 tPWD 40 40 100</td> <td>IDDD (Q) 0.11 0.20 mA IDD1 (Q) 0.6 1.0 mA IDD1 (Q) 0.2 0.6 mA IDD1 (Q) 2.2 3.4 mA IDD1 (Q) 0.7 1.1 mA IDD1 (25) 5.2 7.7 mA IDD2 (25) 0.4 0.8 mA IDD1 (Q) 0.4 0.8 mA IDD1 (25) 0.4 0.8 mA IDD1 (20) 0.4 0.8 mA IDD1 (20) 0.4 0.8 mA IDD1 (25) 3.4 4.8 MA IDD1 (25) 0.7 VDD1, VDD2 0.3 VDD1, VDD2 V ViH 0.7 VDD1, VDD2 0.0 0.1 V VOBH VDD1, VDD2 0.0 0.1 V VOBL</td>	IDDD (Q) 0.11 0.20 IDD1 (Q) 0.6 1.0 IDD1 (Q) 0.2 0.6 IDD1 (10) 2.2 3.4 IDD1 (20) 0.7 1.1 IDD1 (25) 5.2 7.7 IDD1 (20) 0.4 0.8 IDD1 (20) 0.4 0.8 IDD1 (20) 0.4 0.8 IDD1 (20) 1.5 2.2 IDD1 (20) 1.5 2.2 IDD1 (20) 3.4 4.8 IDD1 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IDD2 (25) 3.4 4.8 IA, IB -10 +0.01 +10 VH 0.7 VDD1, VDD2 VDD1, VDD2 0.3 VDD1, VDD2 VaH VDD1, VDD2 - 0.5 0.0 0.1 VOAH VDD1, VDD2 - 0.5 0.0 0.1 VOAL VDD1, VOBL 0.4 0.1 PW 1 1000 100 tPWD 40 40 100	IDDD (Q) 0.11 0.20 mA IDD1 (Q) 0.6 1.0 mA IDD1 (Q) 0.2 0.6 mA IDD1 (Q) 2.2 3.4 mA IDD1 (Q) 0.7 1.1 mA IDD1 (25) 5.2 7.7 mA IDD2 (25) 0.4 0.8 mA IDD1 (Q) 0.4 0.8 mA IDD1 (25) 0.4 0.8 mA IDD1 (20) 0.4 0.8 mA IDD1 (20) 0.4 0.8 mA IDD1 (25) 3.4 4.8 MA IDD1 (25) 0.7 VDD1, VDD2 0.3 VDD1, VDD2 V ViH 0.7 VDD1, VDD2 0.0 0.1 V VOBH VDD1, VDD2 0.0 0.1 V VOBL

	1	1			-	
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
ADuM120xBR						
Minimum Pulse Width ²	PW			100	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ³		10			Mbps	C _L = 15 pF, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	20		60	ns	C _L = 15 pF, CMOS signal levels
Pulse-Width Distortion, tplh -tphl ⁴	PWD			3	ns	C _L = 15 pF, CMOS signal levels
Change vs. Temperature			5		ps/°C	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew ⁵	t _{PSK}			22	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t _{pskod}			22	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		3.0		ns	C _L = 15 pF, CMOS signal levels
ADuM120xCR						
Minimum Pulse Width ²	PW		20	40	ns	C _L = 15 pF, CMOS signal levels
Maximum Data Rate ³		25	50		Mbps	C _L = 15 pF, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	20		55	ns	C _L = 15 pF, CMOS signal levels
Pulse-Width Distortion, tplh – tphl 4	PWD			3	ns	C _L = 15 pF, CMOS signal levels
Change vs. Temperature			5		ps/°C	C _L = 15 pF, CMOS signal levels
Propagation Delay Skew ⁵	t PSK			16	ns	C _L = 15 pF, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t pskod			16	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		3.0		ns	C _L = 15 pF, CMOS signal levels
For All Models						
Common Mode Transient Immunity at Logic High Output ⁷	CM⊦	25	35		kV/μs	$V_{lx} = V_{DD1}$, V_{DD2} , $V_{CM} = 1000$ V, transient magnitude = 800 V
Common Mode Transient Immunity at Logic Low Output ⁷	CM∟	25	35		kV/μs	$V_{Ix} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = 800 V
Refresh Rate	fr		1.1		Mbps	
Input Dynamic Supply Current, per Channel ⁸	I _{DDI (D)}		0.10		mA/Mbps	
Output Dynamic Supply Current, per Channel ⁸	IDDO (D)		0.03		mA/Mbps	

¹ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total l_{DD1} and l_{DD2} supply currents as a function of data rate for ADuM1200 and ADuM1201 channel configurations.

² The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.

³ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.

⁴ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal.

⁵ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

⁶ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

 7 CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

⁸ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

All voltages are relative to their respective ground. 5 V/3 V operation: $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$, $2.7 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$. 3 V/5 V operation: $2.7 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$, $4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}$. All min/max specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_A = 25^{\circ}\text{C}$; $V_{DD1} = 3.0 \text{ V}$, $V_{DD2} = 5.0 \text{ V}$; or $V_{DD1} = 5.0 \text{ V}$, $V_{DD2} = 3.0 \text{ V}$.

Parameter DC SPECIFICATIONS			Tvn	Max	Unit	Test Conditions
	Symbol	Min	Тур	Max	Onic	Test conditions
Input Supply Current, per Channel, Quiescent	la su co				mA	
5 V/3 V Operation	I _{DDI (Q)}		0.50	0.6	mA	
3 V/5 V Operation			0.30	0.8	mA	
•			0.20	0.55		
Output Supply Current, per Channel, Quiescent	DDO (Q)		0.1.1	0.20	mA	
5 V/3 V Operation			0.11	0.20	mA	
3 V/5 V Operation			0.19	0.25	mA	
ADuM1200, Total Supply Current, Two Channels ¹						
DC to 2 Mbps						
V _{DD1} Supply Current	I _{DD1 (Q)}					
5 V/3 V Operation			1.1	1.4	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			0.6	1.0	mA	DC to 1 MHz logic signal freq.
V _{DD2} Supply Current	IDD2 (Q)					
5 V/3 V Operation			0.2	0.6	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			0.5	0.8	mA	DC to 1 MHz logic signal freq.
10 Mbps (BR and CR Grades Only)						
VDD1 Supply Current	I _{DD1 (10)}					
5 V/3 V Operation			4.3	5.5	mA	5 MHz logic signal freq.
3 V/5 V Operation			2.2	3.4	mA	5 MHz logic signal freq.
VDD2 Supply Current	I _{DD2 (10)}					
5 V/3 V Operation			0.7	1.1	mA	5 MHz logic signal freq.
3 V/5 V Operation			1.3	2.0	mA	5 MHz logic signal freq.
25 Mbps (CR Grade Only)						
VDD1 Supply Current	I _{DD1 (25)}					
5 V/3 V Operation			10	13	mA	12.5 MHz logic signal freq.
3 V/5 V Operation			5.2	7.7	mA	12.5 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2 (25)}					
5 V/3 V Operation			1.5	2.0	mA	12.5 MHz logic signal freq.
3 V/5 V Operation			2.8	3.4	mA	12.5 MHz logic signal freq.
ADuM1201, Total Supply Current, Two Channels ¹						
DC to 2 Mbps						
V _{DD1} Supply Current	IDD1 (Q)					
5 V/3 V Operation			0.8	1.1	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			0.4	0.8	mA	DC to 1 MHz logic signal freq.
V _{DD2} Supply Current	I _{DD2 (Q)}					5 5 1
5 V/3 V Operation	(4)		0.4	0.8	mA	DC to 1 MHz logic signal freq.
3 V/5 V Operation			0.8	1.1	mA	DC to 1 MHz logic signal freq.
10 Mbps (BR and CR Grades Only)						
V _{DD1} Supply Current	IDD1 (10)					
5 V/3 V Operation			2.8	3.5	mA	5 MHz logic signal freq.
3 V/5 V Operation			1.5	2.2	mA	5 MHz logic signal freq.
V _{DD2} Supply Current	IDD2 (10)			<i>L.L</i>	1101	s minz logic signar neq.
5 V/3 V Operation	1002 (10)		1.5	2.2	mA	5 MHz logic signal freq.
3 V/5 V Operation			1.5 2.8	2.2 3.5	mA	5 MHz logic signal freq.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
25 Mbps (CR Grade Only)						
V _{DD1} Supply Current	I _{DD1 (25)}					
5 V/3 V Operation			6.3	8.0	mA	12.5 MHz logic signal freq.
3 V/5 V Operation			3.4	4.8	mA	12.5 MHz logic signal freq.
VDD2 Supply Current	I _{DD2 (25)}					
5 V/3 V Operation			3.4	4.8	mA	12.5 MHz logic signal freq.
3 V/5 V Operation			6.3	8.0	mA	12.5 MHz logic signal freq.
For All Models						
Input Currents	I _{IA} , I _{IB}	-10	+0.01	+10	μΑ	$0 \leq V_{IA}, V_{IB} \leq V_{DD1} \text{ or } V_{DD2}$
Logic High Input Threshold	VIH	0.7 VDD1, VDD2			V	
Logic Low Input Threshold	VIL			0.3 V _{DD1} , V _{DD2}	V	
5 V/3 V Operation		0.8			V	
3 V/5 V Operation		0.4			V	
Logic High Output Voltages	Voah, Vobh	V _{DD1} , V _{DD2} – 0.1	V _{DD1} , V _{DD2}		V	$I_{\text{Ox}} = -20 \ \mu\text{A}, V_{\text{Ix}} = V_{\text{IxH}}$
		V _{DD1} , V _{DD2} -0.5	V _{DD1} , V _{DD2} – 0.2		V	$I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$
Logic Low Output Voltages	VOAL, VOBL		0.0	0.1	V	$I_{Ox} = 20 \ \mu A, V_{Ix} = V_{IxL}$
			0.04	0.1	V	$I_{Ox} = 400 \ \mu A, V_{Ix} = V_{IxL}$
			0.2	0.4	V	$I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$
SWITCHING SPECIFICATIONS						
ADuM120xAR						
Minimum Pulse Width ²	PW			1000	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ³		1			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ^₄	tphl, tplh	50		150	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^4$	PWD			40	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁵	t PSK			50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching ⁶	t _{PSKCD/OD}			50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _F		10		ns	$C_L = 15 \text{ pF}$, CMOS signal levels
ADuM120xBR						
Minimum Pulse Width ²	PW			100	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ³		10			Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ^₄	tphl, tplh	15		55	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^4$	PWD			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Change vs. Temperature			5		ps/°C	$C_L = 15 \text{pF}$, CMOS signal levels
Propagation Delay Skew ^₅	t _{PSK}			22	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t _{PSKCD}			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t _{PSKOD}			22	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _f					$C_L = 15 \text{ pF}$, CMOS signal levels
5 V/3 V Operation			3.0		ns	
3 V/5 V Operation			2.5		ns	

	1	1			1	
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
ADuM120xCR						
Minimum Pulse Width ²	PW		20	40	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Maximum Data Rate ³		25	50		Mbps	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay ⁴	tphl, tplh	20		50	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Pulse-Width Distortion, $ t_{PLH} - t_{PHL} ^4$	PWD			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Change vs. Temperature			5		ps/°C	$C_L = 15 \text{ pF}$, CMOS signal levels
Propagation Delay Skew ⁵	t _{PSK}			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Codirectional Channels ⁶	t pskcd			3	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Channel-to-Channel Matching, Opposing Directional Channels ⁶	t _{PSKOD}			15	ns	$C_L = 15 \text{ pF}$, CMOS signal levels
Output Rise/Fall Time (10% to 90%)	t _R /t _f					$C_L = 15 \text{ pF}$, CMOS signal levels
5 V/3 V Operation			3.0		ns	
3 V/5 V Operation			2.5		ns	
For All Models						
Common-Mode Transient Immunity at Logic High Output ⁷	CM _H	25	35		kV/μs	$V_{lx} = V_{DD1}, V_{DD2}, V_{CM} = 1000 V,$ transient magnitude = 800 V
Common-Mode Transient Immunity at Logic Low Output ⁷	CM∟	25	35		kV/μs	$V_{lx} = 0 V$, $V_{CM} = 1000 V$, transient magnitude = $800 V$
Refresh Rate	fr					
5 V/3 V Operation			1.2		Mbps	
3 V/5 V Operation			1.1		Mbps	
Input Dynamic Supply Current, per Channel ⁸	I _{DDI} (D)					
5 V/3 V Operation			0.19		mA/Mbps	
3 V/5 V Operation			0.10		mA/Mbps	
Output Dynamic Supply Current, per Channel ⁸	I _{DDO (D)}					
5 V/3 V Operation			0.03		mA/Mbps	
3 V/5 V Operation			0.05		mA/Mbps	

¹ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11 for total IDD1 and IDD2 supply currents as a function of data rate for ADuM1200 and ADuM1201 channel configurations.

² The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.

³ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.

⁴ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_k signal to the 50% level of the falling edge of the V_{ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{ix} signal to the 50% level of the rising edge of the V_{ox} signal.

⁵ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

⁶ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.

⁷ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ > 0.8 V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining V₀ < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

⁸ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min Typ	Мах	Unit	Test Conditions
Resistance (Input-to-Output) ¹	R _{I-O}	10 ¹²		Ω	
Capacitance (Input-to-Output) ¹	CI-O	1.0		pF	f = 1 MHz
Input Capacitance	Cı	4.0		рF	
IC Junction-to-Case Thermal Resistance, Side 1	θιοι	46		°C/W	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	θ _{JCO}	41		°C/W	

¹ The device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, and Pin 4 are shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM1200/ADuM1201 have been approved by the following organizations:

Table 5.

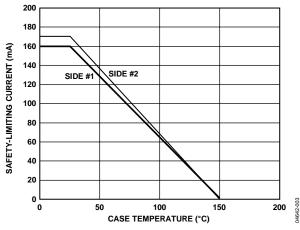
UL	CSA	VDE
Recognized under 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice #5A	Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 ²
		Basic insulation, 560 V peak
2500 V rms isolation voltage		Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000, Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

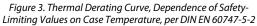
¹ In accordance with UL1577, each ADuM120x is proof-tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 μA). ² In accordance with DIN EN 60747-5-2, each ADuM120x is proof-tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection limit = 5 μC).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(I01)	4.90 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)


DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS


m 11	_
Table	7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110			
For Rated Mains Voltage ≤ 150 V rms		I–IV	
For Rated Mains Voltage ≤ 300 V rms		1–111	
For Rated Mains Voltage \leq 400 V rms		I–II	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	VIORM	560	V peak
Input-to-Output Test Voltage, Method b1	VPR	1050	V peak
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC			
Input-to-Output Test Voltage, Method a	V _{PR}		
After Environmental Tests Subgroup 1			
$V_{IORM} \times 1.6 = V_{PR}$, t _m = 60 sec, Partial Discharge < 5 pC		896	V peak
After Input and/or Safety Test Subgroup 2/3			
$V_{IORM} \times 1.2 = V_{PR}$, t _m = 60 sec, Partial Discharge < 5 pC		672	V peak
Highest Allowable Overvoltage (Transient Overvoltage, $t_{TR} = 10$ sec)	VTR	4000	V peak
Safety-Limiting Values (maximum value allowed in the event of a failure; also see Figure 3)			
Case Temperature	Ts	150	°C
Side 1 Current	I _{S1}	160	mA
Side 2 Current	I _{S2}	170	mA
Insulation Resistance at T_s , $V_{IO} = 500 \text{ V}$	Rs	>109	Ω

Note that the "*" marking on the package denotes DIN EN 60747-5-2 approval for a 560 V peak working voltage.

This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	+105	°C
Supply Voltages ¹	V _{DD1} , V _{DD2}	2.7	5.5	٧
Input Signal Rise and Fall Times			1.0	ms

¹ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 9.

Parameter	Symbol	Min	Мах	Unit
Storage Temperature	T _{ST}	-55	150	°C
Ambient Operating Temperature	TA	-40	105	°C
Supply Voltages ¹	V _{DD1} , V _{DD2}	-0.5	7.0	V
Input Voltage ^{1, 2}	VIA, VIB	-0.5	V _{DDI} + 0.5	V
Output Voltage ^{1, 2}	Voa, Vob	-0.5	V _{DDO} + 0.5	V
Average Output Current, per Pin ³	lo	-35	35	mA
Common-Mode Transients ⁴	CML, CMH	-100	+100	kV/μs

¹ All voltages are relative to their respective ground.

 2 V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of a given channel, respectively.

³ See Figure 3 for maximum rated current values for various temperatures.

⁴ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating can cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 10. ADuM1200 Truth Table (Positive Logic)

V _{IA} Input	V _{IB} Input	V _{DD1} State	V _{DD2} State	Voa Output	V _{OB} Output	Notes
Н	Н	Powered	Powered	Н	Н	
L	L	Powered	Powered	L	L	
Н	L	Powered	Powered	Н	L	
L	н	Powered	Powered	L	н	
Х	Х	Unpowered	Powered	н	Н	Outputs return to the input state within 1 μ s of V _{DDI} power restoration.
Х	Х	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within 1 μs of V_{DDO} power restoration.

Table 11. ADuM1201 Truth Table (Positive Logic)

V _{IA} Input	V _{IB} Input	V _{DD1} State	V _{DD2} State	VoA Output	V _{OB} Output	Notes
Н	н	Powered	Powered	Н	Н	
L	L	Powered	Powered	L	L	
Н	L	Powered	Powered	н	L	
L	н	Powered	Powered	L	н	
Х	Х	Unpowered	Powered	Indeterminate	н	Outputs return to the input state within 1 μ s of V _{DD1} power restoration.
Х	Х	Powered	Unpowered	н	Indeterminate	Outputs return to the input state within 1 μ s of V _{DDO} power restoration.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

04642-004

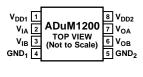
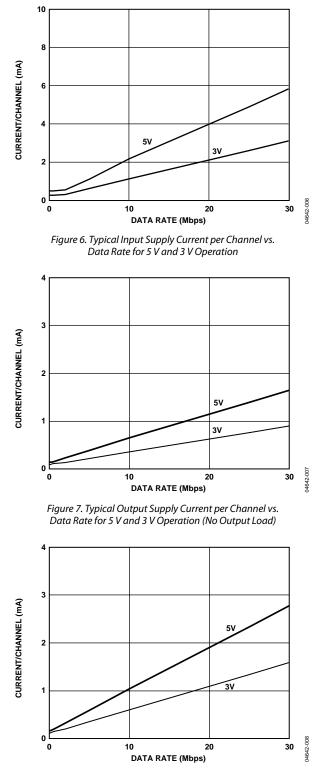
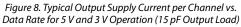


Figure 4. ADuM1200 Pin Configuration

Table 12. ADuM1200 Pin Function Descriptions

Pin		
No.	Mnemonic	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	VIA	Logic Input A.
3	VIB	Logic Input B.
4	GND ₁	Ground 1. Ground reference for isolator Side 1.
5	GND ₂	Ground 2. Ground reference for isolator Side 2.
6	V _{OB}	Logic Output B.
7	VOA	Logic Output A.
8	V _{DD2}	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.




Figure 5. ADuM1201 Pin Configuration

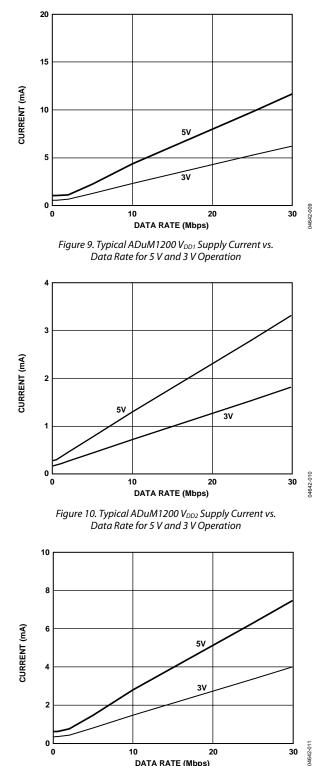
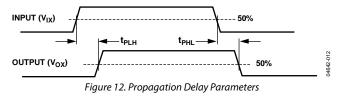

Pin		
No.	Mnemonic	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	VOA	Logic Output A.
3	VIB	Logic Input B.
4	GND ₁	Ground 1. Ground reference for Isolator Side 1.
5	GND ₂	Ground 2. Ground reference for Isolator Side 2.
6	Vob	Logic Output B.
7	VIA	Logic Input A.
8	V _{DD2}	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

Table 13. ADuM1201 Pin Function Descriptions

TYPICAL PERFORMANCE CHARACTERISTICS

DATA RATE (Mbps) Figure 11. Typical ADuM1201 V_{DD1} or V_{DD2} Supply Current vs. Data Rate for 5 V and 3 V Operation


APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM120x digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between 0.01 μ F and 0.1 μ F. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high.

Pulse-width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM120x component.

Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM120x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than 2 µs at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about 5 µs, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 10 and Table 11) by the watchdog timer circuit.

The ADuM120x are extremely immune to external magnetic fields. The limitation on the ADuM120x's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM120x is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

 $V = (-d\beta/dt) \sum \prod r_n^2; n = 1, 2, ... N$

where:

 β is the magnetic flux density (gauss). *N* is the number of turns in the receiving coil. r_n is the radius of the nth turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADuM120x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 13.

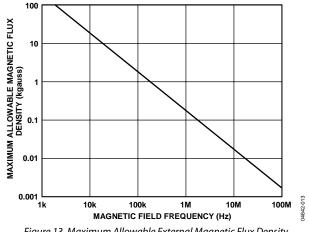
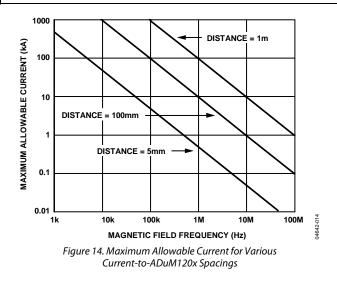



Figure 13. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM120x transformers. Figure 14 expresses these allowable current magnitudes as a function of frequency for selected distances. As seen, the ADuM120x are extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example, one would have to place a 0.5 kA current 5 mm away from the ADuM120x to affect the component's operation.

Note that at combinations of strong magnetic fields and high frequencies, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM120x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$I_{DDI} = I_{DDI(Q)} \qquad \qquad f \le 0.5 f_r$$

$$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$$
 $f \le 0.5f_r$

for each output channel, the supply current is given by

$$\begin{split} I_{DDO} &= I_{DDO (Q)} & f \leq 0.5 f_r \\ I_{DDO} &= (I_{DDO (D)} + (0.5 \times 10^{-3}) \times C_L V_{DDO}) \times (2f - f_r) + I_{DDO (Q)} \\ & f \leq 0.5 f_r \end{split}$$

where:

*I*_{DDI (D)}, *I*_{DDO (D)} are the input and output dynamic supply currents per channel (mA/Mbps).

 C_L is the output load capacitance (pF).

 V_{DDO} is the output supply voltage (V).

f is the input logic signal frequency (MHz, half of the input data rate, NRZ signaling).

 f_r is the input stage refresh rate (Mbps).

*I*_{DDI (Q)}, *I*_{DDO (Q)} are the specified input and output quiescent supply currents (mA).

To calculate the total I_{DD1} and I_{DD2} supply current, the supply currents for each input and output channel corresponding to I_{DD1} and I_{DD2} are calculated and totaled. Figure 6 and Figure 7 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 8 provides perchannel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 11 provide total I_{DD1} and I_{DD2} supply current as a function of data rate for ADuM1200 and ADuM1201 channel configurations.

OUTLINE DIMENSIONS

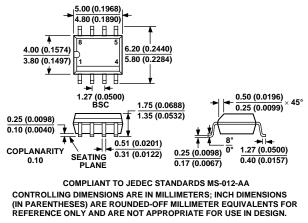


Figure 15. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters (inches)

ORDERING GUIDE

Model	Number of Inputs, V _{DD1} Side	Number of Inputs, V _{DD2} Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse-Width Distortion (ns)	Temperature Range (°C)	Package Option ¹
ADuM1200AR	2	0	1	100	40	-40 to +105	R-8
ADuM1200AR-RL7	2	0	1	100	40	-40 to +105	R-8
ADuM1200ARZ ²	2	0	1	100	40	-40 to +105	R-8
ADuM1200ARZ-RL7 ²	2	0	1	100	40	-40 to +105	R-8
ADuM1200BR	2	0	10	50	3	-40 to +105	R-8
ADuM1200BR-RL7	2	0	10	50	3	-40 to +105	R-8
ADuM1200BRZ ²	2	0	10	50	3	-40 to +105	R-8
ADuM1200BRZ-RL7 ²	2	0	10	50	3	-40 to +105	R-8
ADuM1200CR	2	0	25	45	3	-40 to +105	R-8
ADuM1200CR-RL7	2	0	25	45	3	-40 to +105	R-8
ADuM1200CRZ ²	2	0	25	45	3	-40 to +105	R-8
ADuM1200CRZ-RL7 ²	2	0	25	45	3	-40 to +105	R-8
ADuM1201AR	1	1	1	100	40	-40 to +105	R-8
ADuM1201AR-RL7	1	1	1	100	40	-40 to +105	R-8
ADuM1201ARZ ²	1	1	1	100	40	-40 to +105	R-8
ADuM1201ARZ-RL7 ²	1	1	1	100	40	-40 to +105	R-8
ADuM1201BR	1	1	10	50	3	-40 to +105	R-8
ADuM1201BR-RL7	1	1	10	50	3	-40 to +105	R-8
ADuM1201BRZ ²	1	1	10	50	3	-40 to +105	R-8
ADuM1201BRZ-RL7 ²	1	1	10	50	3	-40 to +105	R-8
ADuM1201CR	1	1	25	45	3	-40 to +105	R-8
ADuM1201CR-RL7	1	1	25	45	3	-40 to +105	R-8
ADuM1201CRZ ²	1	1	25	45	3	-40 to +105	R-8
ADuM1201CRZ-RL7 ²	1	1	25	45	3	-40 to +105	R-8

 1 R-8 = 8-lead narrow body SOIC.

 2 Z = Pb-free part.

NOTES

NOTES

NOTES

©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04642-0-2/06(C)

www.analog.com

Rev. C | Page 20 of 20