
International IOR Rectifier

SAFEIR Series 40TPS16PbF

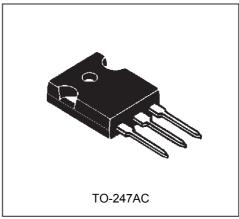
PHASE CONTROL SCR Lead-Free ("PbF" suffix)

V_T < 1.45V @ 40A $I_{TSM} = 500A$

V_{RRM} = 1600V

Description/ Features

The 40TPS16PbF SAFEIR series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125°C junction temperature.


Low lgt parts available.

Typical applications are in input rectification (soft start) and these products are designed to be used with International Rectifier input diodes, switches and output rectifiers which are available in identical package outlines.

Major Ratings and Characteristics

Characteristics	Values	Units
I _{T(AV)} Sinusoidal	35	Α
waveform		
I _{RMS}	55	Α
V _{RRM} /V _{DRM}	1600	٧
I _{TSM}	500	Α
V _T @40 A, T _J = 25°C	1.45	V
dv/dt	1000	V/µs
di/dt	100	A/µs
T _J	-40 to 125	°C

Package Outline

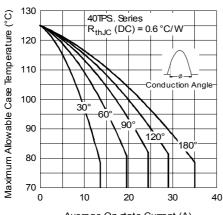
40TPS16PbF SAFEIR Series

Voltage Ratings

Part Number	V _{RRM} / V _{DRM} , max. repetitive peak and off-state voltage	V _{RSM} , maximum non repetitive peak reverse voltage	I _{RRM} /I _{DRM} 125°C mA
40TPS16PbF	1600	1700	10

Absolute Maximum Ratings

	Parameters	40TPS16	Units		Conditions	
I _{T(AV)}	Max. Average On-state Current		35	A @ T _c	= 79° C, 180° conductio	n half sine wave
I _{T(RMS)}	Max. Continuous RMS	55				
	On-state Current As AC switch					
I _{TSM}	Max. Peak One Cycle Non-Repetitive	500	Α	10ms Sine pul	se, rated V _{RRM} applied	Initial
	Surge Current	600		10ms Sine pul	se, no voltage reapplied	$T_J = T_J max.$
I ² t	Max. I ² t for Fusing	1250	A ² s	10ms Sine pul	se, rated V _{RRM} applied	
		1760		10ms Sine puls	se, no voltage reapplied	
l ² √t	Max. I ² √t for Fusing	12500	A ² √s	t=0.1 to 10ms,	no voltage reapplied	
V _{T(TO)1}	Low Level Value of Threshold	1.02	V	T _J = 125°C		
	Voltage					
V _{T(TO)2}	High Level Value of Threshold	1.23				
	Voltage					
r _{t1}	Low Level Value of On-state	9.74	mΩ			
	Slope Resistance					
r _{t2}	High Level Value of On-state	7.50				
	Slope Resistance					
V_{TM}	Max. Peak On-state Voltage	1.85	V	@ 110A, T _J =2	5°C	
di/dt	${\it Max.}{\it RateofRiseofTurned-onCurrent}$	100	A/µs	T _J =25°C		
I _H	Max. Holding Current	150	mA			
IL	Max. Latching Current	300				
I _{RRM} /	Max. Reverse and Direct	0.5		T _J =25°C	$V_R = rated V_{RR}$	/V
I _{DRM}	Leakage Current	10		T _J = 125°C	R RR	M' DRM
dv/dt	Max. Rate of Rise	1000	V/µs	$T_J = T_J \text{ max., lir}$	near to 80% V _{DRM} , R _g -k =	open
	of Off-state Voltage				<u> </u>	


Triggering

	Parameters	40TPS16	Units	(Conditions
P _{GM}	Max. peak Gate Power	10	W		
P _{G(AV}	Max. average Gate Power	2.5			
I _{GM}	Max. peak Gate Current	2.5	Α		
- V _{GM}	Max. peak negative Gate Voltage	10	٧		
V _{GT}	Max. required DC Gate Voltage	4.0		$T_J = -40^{\circ}C$	Anode supply = 6V
	to trigger	2.5		T _J = 25°C	resistive load
		1.7		T _J = 125°C	
I _{GT}	Max. required DC Gate Current	270	mA	T _J = - 40°C	
	to trigger	150		T _J = 25°C	
		80		$T_J = 125^{\circ}C$	
		40		$T_J = 25^{\circ}C$, for 40	OTPS08A
V_{GD}	Max. DC Gate Voltage not to trigger	0.25	V	T _J = 125°C, V _{DRM} = rated value	
I_{GD}	Max. DC Gate Current not to trigger	6	mA		

Thermal-Mechanical Specifications

	Parameters		40TPS16	Units	Conditions
T _J	Max. Junction Temperature	Range	- 40 to 125	°C	
T _{stg}	Max. Storage Temperature F	Range	- 40 to 125		
R _{thJC}	Max. Thermal Resistance Ju	ınction	0.6	°C/W	DC operation
	to Case				
R _{thJA}	Max. Thermal Resistance Ju	ınction	40		
	to Ambient				
R _{thCS}	Max. Thermal Resistance Ca	ase	0.2		Mounting surface, smooth and greased
	to Heatsink				
wt	Approximate Weight		6 (0.21)	g (oz.)	
Т	Mounting Torque	Min.	6 (5)	Kg-cm	
		Max.	12 (10)	(lbf-in)	
	Case Style		TO-247AC		
	Marking Device		40TP	S16	

Bulletin I2183 11/04

Average On-state Current (A)
Fig. 1 - Current Rating Characteristics

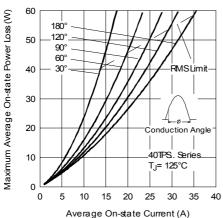


Fig. 3 - On-state Power Loss Characteristics

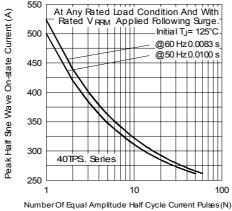


Fig. 5 - Maximum Non-Repetitive Surge Current

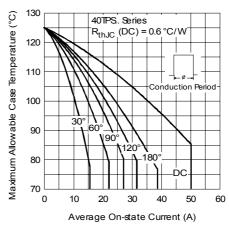


Fig. 2 - Current Rating Characteristics

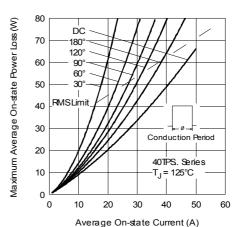


Fig. 4 - On-state Power Loss Characteristics

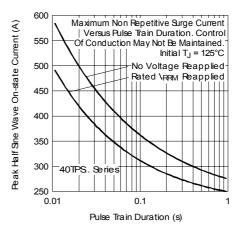


Fig. 6 - Maximum Non-Repetitive Surge Current

Document Number: 94389 www.vishay.com

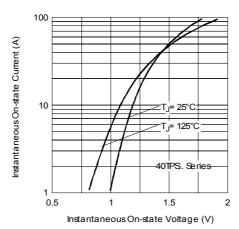


Fig. 7 - On-state Voltage Drop Characteristics

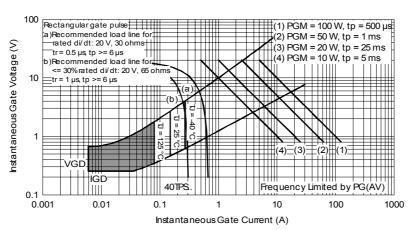
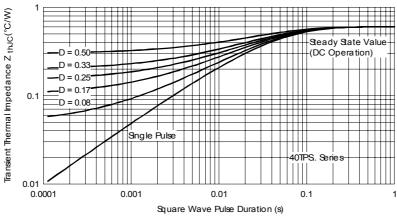
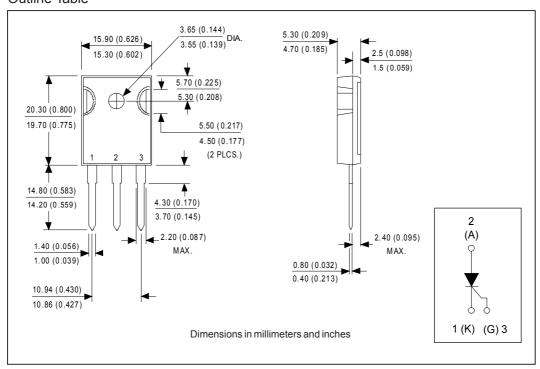
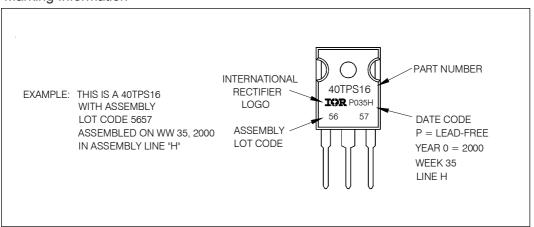


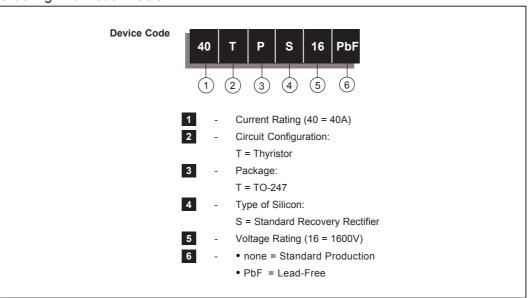
Fig. 8 - GateCharacteristics


Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

Bulletin I2183 11/04

Outline Table



Marking Information

Bulletin I2183 11/04

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

11/04

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07